Supplementary Information for

Carbon doped hexagonal boron nitride as efficient metal-

free catalyst for NO capture and reduction

Jiali Nie¹, Ying Li¹, Dongyue Gao¹, Yi Fang¹, Jing Lin¹, Chengchun Tang¹, Zhonglu Guo^{1,*}

¹*Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of*

Materials Science and Engineering, Hebei University of Technology, Tianjin 300130,

China

*Correspondence and requests for materials should be addressed to Z. L. Guo: zlguo@hebut.edu.cn

Fig. S1 Top view and side view of possible configurations of (a) h-BN, (b) C-doped h-BN, and (c) O-doped h-BN after lattice relaxation

Fig. S2 Top view and side view of adsorption configurations of C_BBN and O_NBN after lattice relaxation

Fig. S3 Adsorption free energies of *H and *NO at C_BBN and O_NBN .

Fig. S4 The Gibbs free energy diagram for NO reduction to N₂O through N₂O₂ dimer formation on C_BBN at U = 0 V.

Gas	ΔZPE (relevant free molecule)	TS (relevant free molecule)
NO	0.12	0.66
NOH	0.35	0.69
HNO	0.36	0.69
HNOH	0.71	0.73
H ₂ NO	0.70	0.74
H ₂ NOH	1.06	0.73
NH	0.20	0.56
NH ₂	0.51	0.61
NH ₃	0.91	0.60
H ₂ O	0.57	0.59

Table S1 Zero-point energy (ZPE), and entropic correction (TS, T = 298.15K) of the free molecule. The unit for energy is eV.

Table S2 Zero-point energy (ZPE), and entropic correction (TS, T = 298.15K) of the intermediates for the NORR. The unit for energy is eV.

C _B BN (C site)	ΔZPE (intermediates for the NORR)	TS (intermediates for the NORR)
*NO	0.19	0.14
*NOH	0.49	0.14
*HNO	0.50	0.14
*HNOH	0.84	0.13
*H ₂ NO	0.83	0.09
*N	0.06	0.08
*NH	0.38	0.07

*NH ₂	0.75	0.06
*NH ₃	1.06	0.09

Table S3 Zero-point energy (ZPE), and entropic correction (TS, T = 298.15K) of the intermediates for the NORR. The unit for energy is eV.

C _B BN (B site)	ΔZPE (intermediates for the NORR)	TS (intermediates for the NORR)
*NO	0.27	0.08
*NOH	0.48	0.17
*HNO	0.48	0.16
*HNOH	0.81	0.17
*H ₂ NO	0.83	0.14
*N	0.05	0.09
*NH	0.29	0.05
*NH ₂	0.70	0.09
*NH3	0.93	0.16

Table S4 Zero-point energy (ZPE), and entropic correction (TS, T = 298.15K) of the intermediates for the NORR. The unit for energy is eV.

O _N BN (B site)	ΔZPE (intermediates for the NORR)	TS (intermediates for the NORR)
*NO	0.18	0.13
*NOH	0.49	0.14
*HNO	0.49	0.15
*HNOH	0.82	0.16
*H ₂ NO	0.89	0.09
*H ₂ NOH	1.06	0.09
*N	0.06	0.07
*NH	0.35	0.10
*NH ₂	0.72	0.08

Fig. S5 The optimized configurations of all NORR intermediates on C site of C_BBN with solvent effect.

Fig. S6 NORR free energy diagrams of the considered pathways on C site with solvent effect. The applied potential is zero.

C _B BN (C site)	ΔG (without solvation effects)	ΔG (with solvation effects)
* + NO \rightarrow *NO (N end-on)	-0.99	-1.08
$*NO + H^+ + e^- \rightarrow *HNO$	-0.16	-0.31
$*NO + H^+ + e^- \rightarrow *NOH$	0.34	0.14
*HNO + H ⁺ + e ⁻ \rightarrow *HNOH	-0.50	-0.52
*HNO + H ⁺ + $e^- \rightarrow *H_2NO$	-0.01	-0.07
*NOH + H ⁺ + e ⁻ \rightarrow *N +H ₂ O	-0.04	-0.25
*NOH + H ⁺ + e ⁻ \rightarrow *HNOH	-1.00	-0.98
*HNOH + H ⁺ + $e^- \rightarrow *H_2$ NOH		
*HNOH + H ⁺ + e ⁻ \rightarrow *NH +H ₂ O	-0.42	-0.68
* $H_2NO + H^+ + e^- \rightarrow H_2NOH$		
$*N + H^+ + e^- \rightarrow *NH$	-1.38	-1.40
* $H_2NOH + H^+ + e^- \rightarrow *NH_2$		

Table S5 Computed Gibbs free energy of each elementary step on the C site of C_BBN without and with solvation effects. (ΔG , units in eV)

$*NH + H^+ + e^- \rightarrow *NH_2$	-1.89	-1.85
$*\mathrm{NH}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow * + \mathrm{NH}_3$	0.28	0.20

Table S6 Computed Gibbs free energy of the optimal pathway for ammonia formation on the B site of C_BBN without and with solvation effects. (ΔG , units in eV)

C _B BN (B site)	Δ <i>G</i> (without solvation effects)	ΔG (with solvation effects)
*+NO → *NO	-0.61	-0.90
$*NO + H^+ + e^- \rightarrow *HNO$	-0.66	-0.75
*HNO + H ⁺ + $e^- \rightarrow$ *HNOH	-0.39	-0.31
*HNOH + H ⁺ + $e^- \rightarrow *NH + H_2O$	0.36	0.01
*NH + H ⁺ + $e^- \rightarrow *NH_2$	-2.65	-2.56
$*NH_2 + H^+ + e^- \rightarrow * + NH_3$	0.27	0.26

Table S7 Computed Gibbs free energy of the optimal pathway for ammonia formation on the B site of O_NBN without and with solvation effects. (ΔG , units in eV)

O _N BN (B site)	ΔG (without solvation effects)	ΔG (with solvation effects)
$* + NO \rightarrow *NO$	-2.39	-2.55
$*NO + H^+ + e^- \rightarrow *HNO$	-0.74	-0.80
*HNO + H ⁺ + $e^- \rightarrow$ *HNOH	-0.40	-0.40
*HNOH + H ⁺ + e ⁻ \rightarrow *NH + H ₂ O	-0.28	-0.60
$*NH + H^+ + e^- \rightarrow *NH_2$	-2.23	-2.16
$*NH_2 + H^+ + e^- \rightarrow * + NH_3$	2.35	2.26