Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting Information

First principles study of triazine-based covalent organic framework as a high capacity anode material for Na/K-ion batteries

Sitong Liu,^a Bo Liu,^a* Meidong Yu,^a Hanyu Gao,^a Haipeng Guo,^a Daguo Jiang,^a Shenbo Yang,^b Yufeng Wen,^a* and Yabei Wu^c

^a College of Mathematics and Physics, Jinggangshan University, Ji'an, Jiangxi 343009, China ^b Hongzhiwei Technology (Shanghai) Co. Ltd., 1599 Xinjinqiao Road, Pudong, Shanghai, China

^c Department of Materials Science and Engineering and Guangdong Provincial Key Lab for Computational Science and Materials Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

*E-mail: Bo Liu (liubo@jgsu.edu.cn)

Yufeng Wen (wenyufeng@jgsu.edu.cn)

Table S1. Two different stacking patterns with the same bilayer TCOF formula and their relative energy.

Table S2. Adsorption energies for Na/K at different adsorption sites on bilayer TCOF.

System	Adsorption energy(eV)								
	I _{H-H}	I _{TN}	I _{TC}	I _{BC}	IB	IT	T _{H-H}	T _B	T _T
Na-TCOF-AA	-1.259	-1.243	-1.253	-0.795	-0.773	-0.311	-0.558	-0.284	-0.039
K-TCOF-AA	-1.283	-1.273	-1.070	-0.963	-0.662	-0.378	-0.710	-0.570	-0.473

Figure S1. The electronic conductivity of the bilayer TCOF. (a) N-type and (b) P-type.

Figure S2. Interlayer distance profile diagram as a function of Na/K content (x) in the Na/K_x-bilayer TCOF.

Table	S3 .	Diffusion	barriers,	theoretical	capacities	and	Open-circuit	voltages	of	different	2D	anode
materia	als											

Anode	Diffusio	Theor	retical	Open-o	Ref		
materials	(e	capa	acity	volt			
		(mA	.h/g)	(V			
	Na	K	Na	K	Na	K	
TCOF	0.45	0.26	628	628	0.24	0.19	
Bi-C	0.217/0.169	0.179/0.136	485	364	0.24	0.32	1
β-In ₂ Se ₃	0.14	0.09	230	230	0.03	0.13	2
B ₇ N ₅	0.13	0.10	367.9	1471.5	0.22	0.14	3
BP	0.217	0.155	143	570	-	-	4
B ₂ S	0.19	0.04	998	499	0.06	0.18	5
GeS	0.090	0.050	512	256	0.13	0.33	6
Mo ₂ CrC ₂	0.027	0.021	297.91	154.88	-	-	7
Ti ₃ C ₂	0.096	0.103	351.8	191.8	0.137	0.128	8
MnC	0.174	0.138	475	235	-	-	9
Mo ₂ C	0.019	0.015	263	263	-	-	10
MoN ₂	0.56	0.49	864	432	-	-	11
Si ₃ C	0.34	0.18	1115	836	-	-	12

References

(1) Ghani, A.; Ahmed, S.; Murtaza, A.; Muhammad, I.; Rehman, W. u.; Zhou, C.; Zuo, W. L.; Yang, S. Bi–C monolayer as a promising 2D anode material for Li, Na, and K-ion batteries. *Physical Chemistry Chemical Physics* **2023**, *25* (6), 4980-4986, 10.1039/D2CP04712H. DOI: 10.1039/D2CP04712H.

(2) Wu, D.; Fu, B.; Wang, S.; Liang, Y.; Xie, Y.; Ye, X.; Sun, S. A theoretical study of high-performance β-In2Se3 monolayer as the anode material for alkali-metal (Li/Na/K)-ion batteries. *Journal of Materials Science* **2023**, *58* (18), 7660-7672. DOI: 10.1007/s10853-023-08525-0.

(3) Xiong, Y.; Wang, Y.; Ma, N.; Zhang, Y.; Luo, S.; Fan, J. First principles study of B7N5 as a high capacity electrode material for Kion batteries. *Physical Chemistry Chemical Physics* **2023**, 10.1039/D3CP02391E. DOI: 10.1039/D3CP02391E.

(4) Jiang, H. R.; Shyy, W.; Liu, M.; Wei, L.; Wu, M. C.; Zhao, T. S. Boron phosphide monolayer as a potential anode material for alkali metal-based batteries. *Journal of Materials Chemistry A* **2017**, *5* (2), 672-679, 10.1039/C6TA09264K. DOI: 10.1039/C6TA09264K.

(5) Lei, S.; Chen, X.; Xiao, B.; Zhang, W.; Liu, J. Excellent Electrolyte Wettability and High Energy Density of B2S as a Two-Dimensional Dirac Anode for Non-Lithium-Ion Batteries. *ACS Applied Materials & Interfaces* **2019**, *11* (32), 28830-28840. DOI: 10.1021/acsami.9b07219.

(6) Li, F.; Qu, Y.; Zhao, M. Germanium sulfide nanosheet: a universal anode material for alkali metal ion batteries. *Journal of Materials Chemistry A* **2016**, *4* (22), 8905-8912, 10.1039/C6TA03210A. DOI: 10.1039/C6TA03210A.

(7) Xiao, Y.; Zhang, W. Adsorption mechanisms of Mo2CrC2 MXenes as potential anode materials for metal-ion batteries: A first-principles investigation. *Applied Surface Science* **2020**, *513*, 145883. DOI: <u>https://doi.org/10.1016/j.apsusc.2020.145883</u>.

(8) Er, D.; Li, J.; Naguib, M.; Gogotsi, Y.; Shenoy, V. B. Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries. ACS Applied Materials & Interfaces **2014**, 6 (14), 11173-11179. DOI: 10.1021/am501144q.

(9) Chen, Q.; Wang, H.; Li, H.; Duan, Q.; Jiang, D.; Hou, J. Two-dimensional MnC as a potential anode material for Na/K-ion batteries: a theoretical study. *Journal of Molecular Modeling* **2020**, *26* (4), 66. DOI: 10.1007/s00894-020-4326-7.

(10) Çakır, D.; Sevik, C.; Gülseren, O.; Peeters, F. M. Mo2C as a high capacity anode material: a first-principles study. *Journal of Materials Chemistry A* **2016**, *4* (16), 6029-6035, 10.1039/C6TA01918H. DOI: 10.1039/C6TA01918H.

(11) Zhang, X.; Yu, Z.; Wang, S.-S.; Guan, S.; Yang, H. Y.; Yao, Y.; Yang, S. A. Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries. *Journal of Materials Chemistry A* **2016**, *4* (39), 15224-15231, 10.1039/C6TA07065E. DOI: 10.1039/C6TA07065E.

(12) Wang, Y.; Li, Y. Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/Kion batteries. *Journal of Materials Chemistry A* **2020**, *8* (8), 4274-4282, 10.1039/C9TA11589G. DOI: 10.1039/C9TA11589G.