Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information to

Boron-rich Hybrid BCN Nanoribbons as Highly Ambient Uptake of Toxic Gases; H₂S, HF, NH₃, CO, CO₂

Fatemeh Momen¹, Farzaneh Shayeganfar ^{1,2,*}, Ali Ramazani³

¹Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran

²Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 10485

³Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Contents

1.	The length of bonds in pristine and B-rich nanoribbons with 25%-C and 33%-C (Table S1)	5
2.	Electrical properties of pristine and B-rich nanoribbons with 25%-C and 33%-C before gas molecule adsorption (Table S2)	5
3.	Molecular geometry, adsorption distance, charge transfer, adsorption energy of CO molecule adsorbed on pristine and B-rich nanoribbons with 25%-C and 33%-C (Table S3)	6
4.	Electrical properties of pristine and B-rich nanoribbons with 25%-C and 33%-C after CO molecule adsorption (Table S4)	6
5.	Molecular geometry, adsorption distance, charge transfer, adsorption energy of CO_2 molecule adsorbed on pristine and B-rich nanoribbons with 25%-C and 33%-C (Table S5)	7
6.	Electrical properties of pristine and B-rich nanoribbons with 25%-C and 33%-C after CO_2 molecule adsorption (Table S6)	8
7.	Molecular geometry, adsorption distance, charge transfer, adsorption energy of $\rm H_2S$ molecule adsorbed on pristine and B-rich nanoribbons with 25%-C and 33%-C (Table S7)	9
8.	Electrical properties of pristine and B-rich nanoribbons with 25%-C and 33%-C after H_2S molecule adsorption (Table S8)	10
9.	Molecular geometry, adsorption distance, charge transfer, adsorption energy of HF molecule adsorbed on pristine and B-rich nanoribbons with 25%-C and 33%-C (Table S9)	10
10.	Electrical properties of pristine and B-rich nanoribbons with 25%-C and 33%-C after HF molecule adsorption (Table S10)	11
11.	Molecular geometry, adsorption distance, charge transfer, adsorption energy of NH_3 molecule adsorbed on pristine and B-rich nanoribbons with 25%-C and 33%-C (Table S11)	12
12.	Electrical properties of pristine and B-rich nanoribbons with 25%-C and 33%-C after NH ₃ molecule adsorption (Table S12)	13
13.	SF (sensitivity factor) for tow semiconductor structures, 6-ACBNNR with	13

33%-C and 8-ZCBNNR with 25%-C (Table S13)

14. Molecular geometry, adsorption distance, charge transfer, adsorption energy of CO molecule adsorbed at the distance of 3 Å above 8-ZCBNNR with 25%-C (Table S14)	
15. Electrical properties 8-ZCBNNR with 25%-C after CO molecule adsorption at the distance of 3 Å. (Table S15)	e 14
16. Molecular geometry, adsorption distance, charge transfer, adsorption energy of NH ₃ molecule adsorbed at the distance of 3 Å above 8-ZCBNNR with 25%-C (Table S16)	
17. Electrical properties 8-ZCBNNR with 25%-C after NH ₃ molecule adsorption at the distance of 3 Å. (Table S17)	e 15
18. The geometric configurations, band structure, DOS and PDOS of pristing nanoribbons with 25%-C and 33%-C (Fig. S1)	e 16
19. The geometric configurations, band structure, DOS and PDOS of B-rich nanoribbons with 25%-C and 33%-C (Fig. S2)	n 17
20. The geometric configurations of CO molecule on pristine and B-rich nanoribbons with 25%-C and 33%-C (Fig. S3)	n 18
21. The band structure, DOS and PDOS of CO molecule adsorbed on pristing and B-rich nanoribbons with 25%-C and 33%-C (Fig. S4)	e 19
22. The geometric configurations of CO ₂ molecule on pristine and B-rich nanoribbons with 25%-C and 33%-C (Fig. S5)	n 20
23. The band structure, DOS and PDOS of CO ₂ molecule adsorbed or pristine and B-rich nanoribbons with 25%-C and 33%-C (Fig. S6)	n 21
24. The geometric configurations of H ₂ S molecule on pristine and B-rich nanoribbons with 25%-C and 33%-C (Fig. S7)	n 22
25. The band structure, DOS and PDOS of H ₂ S molecule adsorbed on pristing and B-rich nanoribbons with 25%-C and 33%-C (Fig. S8)	23
26. The geometric configurations of HF molecule on pristine and B-rich nanoribbons with 25%-C and 33%-C (Fig. S9)	n 24
27. The band structure, DOS and PDOS of HF molecule adsorbed on pristing and B-rich nanoribbons with 25%-C and 33%-C (Fig. S10)	e 25
28. The geometric configurations of NH ₃ molecule on pristine and B-rich	n 26

nanoribbons with 25%-C and 33%-C (Fig. S11)

29. The band structure, DOS and PDOS of NH₃ molecule adsorbed on pristine and B-rich nanoribbons with 25%-C and 33%-C (Fig. S12)
30. Investigation of adsorption of molecule at the distance of 3 Å above nanoribbon (Fig. S13)
31. The optimized mesh cutoff energy of pristine and B-rich nanoribbons with50%-C, 25%-C and 33%-C (Fig. S14)

Table S1: The length of C-B, C-N, B-N and B-B bonds in 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6- ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C. B-B bond is created due to B atoms replacing C atoms in boron-rich nanoribbons.

bond nanoribbon	С-В	C-N	B-N	В-В
6-ACBNNR with 33%-C	1.41 Å	1.39 Å	1.44 Å	-
8-ZCBNNR with 25%-C	1.48 Å	1.42 Å	1.44 Å	-
B-rich 6- ACBNNR with 33%-C	1.49 Å	1.39 Å	1.44 Å	1.58 Å
B-rich 8-ZCBNNR with 25%-C	1.48 Å	1.42 Å	1.44 Å	1.67 Å

Table S2: Fermi energy (E_F) , energy band gap (E_g) and electrical conductivity of 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C before gas molecule adsorption.

substrate	$E_F(eV)$	$E_g(eV)$	electrical conductivity
6-ACBNNR with 33%-C	-3.318	0.761	semiconductor
8-ZCBNNR with 25%-C	-3.303	0.901	semiconductor
B-rich 6- ACBNNR with 33%-C	-3.600	0	metal
B-rich 8-ZCBNNR with 25%-C	-3.409	0	metal

Table S3: CO molecule adsorbed on 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C: the bond length of gas molecule (L), adsorption distance of nearest-neighbor atoms between the gas molecule and substrate (D), the angle of gas molecule (α), charge transfer between gas molecule and substrate (ΔQ), the sign "-" means that the molecule is the acceptor of the charge and the sign "+" means the molecule is the donor of the charge, and adsorption energy (E_{ads}). The words "before" and "after" express the characteristics of the gas molecule before and after gas molecule adsorption, respectively.

CO molecule adsorption											
substrate	L(Å)	D (Å)	α (°)	$\Delta Q(e)$	$E_{ads}(eV)$	Type of adsorption		
	before	after	before	after	before	after			•		
6-ACBNNR with 33%-C		1.144	2.455	2.976		-	-0.010	-1.483	physisorption		
8-ZCBNNR with 25%-C	1.145	1.147	2.128	3.040	-	-	-0.019	-0.845	physisorption		
B-rich 6-ACBNNR with 33%-C		1.160	2.000	1.616		-	+0.124	-2.275	chemisorption		
B-rich 8-ZCBNNR with 25%-C		1.153	2.000	1.599		-	+0.190	-1.294	chemisorption		

Table S4: Fermi energy (E_F) , energy band gap (E_g) , structural deformation (Δ) and electrical conductivity of 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C after CO molecule adsorption.

system	$E_F(eV)$	$E_g(eV)$	Δ(Å)	electrical conductivity
6-ACBNNR with 33%-C + CO	-3.62	0.875	1.559	semiconductor
8-ZCBNNR with 25%-C + CO	-3.33	0.866	0.737	semiconductor
B-rich 6-ACBNNR with 33%-C + CO	-3.281	0	1.588	metal
B-rich 8-ZCBNNR with 25%-C + CO	-2.950	0	0.839	metal

Table S5: CO₂ molecule adsorbed on 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C: the bond length of gas molecule (L), adsorption distance of nearest-neighbor atoms between the gas molecule and substrate (D), the angle of gas molecule (α), charge transfer between gas molecule and substrate (ΔQ), the sign "-" means that the molecule is the acceptor of the charge and the sign "+" means the molecule is the donor of the charge, and adsorption energy (E_{ads}). The words "before" and "after" express the characteristics of the gas molecule before and after gas molecule adsorption, respectively.

CO₂ molecule adsorption

substrate	L ((Å)	D (Å)	α	α (°)		$E_{ads}(eV)$	Type of adsorption
	before	after	before	after	before	after			1
6-ACBNNR with 33%-C	C-O1 =1.178	C-O1 =1.182	2.016	2.982		178.703	-0.008	-1.602	physisorption
		C-O2 =1.178							
8-ZCBNNR with 25%-C	C-O2 =1.178	C-O1 =1.181	2.128	3.060	180	178.571	-0.013	-0.998	physisorption
		C-O2 =1.181							
B-rich 6-ACBNNR with 33%-C		C-O1 =1.180	2.022	2.968		179.846	+0.013	-1.926	physisorption
		C-O2 =1.179							
B-rich 8-ZCBNNR with 25%-C		C-O1 =1.180	2.027	3.001		178.194	-0.008	-1.079	physisorption
		C-O2 =1.181							

Table S6: Fermi energy (E_F) , energy band gap (E_g) , structural deformation (Δ) and electrical conductivity of 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C after CO₂ molecule adsorption.

system	$E_F(eV)$	$E_g(eV)$	Δ(Å)	electrical conductivity
6-ACBNNR with 33%-C + CO ₂	-3.295	0.875	1.549	semiconductor
8-ZCBNNR with 25%-C + CO ₂	-3.270	0.884	0.730	semiconductor
B-rich 6-ACBNNR with 33%-C + CO ₂	-3.687	0	1.584	metal
B-rich 8-ZCBNNR with 25%-C + CO ₂	-3.469	0	0.793	metal

Table S7: H₂S molecule adsorbed on 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C: the bond length of gas molecule (L), adsorption distance of nearest-neighbor atoms between the gas molecule and substrate (D), the angle of gas molecule (α), charge transfer between gas molecule and substrate (ΔQ), the sign "-" means that the molecule is the acceptor of the charge and the sign "+" means the molecule is the donor of the charge, and adsorption energy (E_{ads}). The words "before" and "after" express the characteristics of the gas molecule before and after gas molecule adsorption, respectively.

H₂S molecule adsorption

substrate	L (L (Å)		Å)	α	α (°)		$E_{ads}(eV)$	Type of adsorption
	before	after	before	after	before	after			•
6-ACBNNR with 33%-C	S-H1 =1.371	S-H1 =1.374	3.635	2.930		91.543	-0.019	-1.510	physisorption
		S-H2 =1.371							
8-ZCBNNR with 25%-C	S-H2 =1.371	S-H1 =1.371	2.128	3.239	92.033	91.267	-0.009	-0.863	physisorption
		S-H2 =1.370							
B-rich 6-ACBNNR with 33%-C		S-H1 =1.372	3.015	2.991		91.925	+0.076	-1.972	physisorption
		S-H2 =1.375							
B-rich 8-ZCBNNR with 25%-C		S-H1 =1.372	2.000	3.036		92.114	+0.069	-0.992	physisorption
		S-H2 =1.372							

Table S8: Fermi energy (E_F), energy band gap (E_g), structural deformation (Δ) and electrical conductivity of 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C after H₂S molecule adsorption.

system	$E_F(eV)$	$E_g(eV)$	Δ(Å)	electrical conductivity
6-ACBNNR with 33%-C + H ₂ S	-3.280	0.857	0.812	semiconductor
8-ZCBNNR with 25%-C + H ₂ S	-3.100	0.875	0.745	semiconductor
B-rich 6-ACBNNR with 33%-C + H ₂ S	-3.565	0	1.644	metal
B-rich 8-ZCBNNR with 25%-C + H ₂ S	-3.322	0	0.784	metal

Table S9: HF molecule adsorbed on 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C: the bond length of gas molecule (L), adsorption distance of nearest-neighbor atoms between the gas molecule and substrate (D), the angle of gas molecule (α), charge transfer between gas molecule and substrate (ΔQ), the sign "-" means that the molecule is the acceptor of the charge and the sign "+" means the molecule is the donor of the charge, and adsorption energy (E_{ads}). The words "before" and "after" express the characteristics of the gas molecule before and after gas molecule adsorption, respectively.

HF molecule adsorption											
substrate	L(Å)	D (Å)	α(°)	$\Delta Q(e)$	$E_{ads}(eV)$	Type of adsorption		
	before	after	before	after	before	after			1		
6-ACBNNR with 33%-C		0.939	3.257	2.143		-	-0.072	-1.541	physisorption		
8-ZCBNNR with 25%-C	0.929	0.930	2.772	2.659	-	-	+0.031	-0.936	physisorption		
B-rich 6-ACBNNR with 33%-C		0.933	2.000	2.640		-	-0.044	-1.938	physisorption		
B-rich 8-ZCBNNR with 25%-C		0.932	2.000	2.531		-	+0.052	-1.060	physisorption		

Table S10: Fermi energy (E_F) , energy band gap (E_g) , structural deformation (Δ) and electrical conductivity of 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C after HF molecule adsorption.

system	$E_F(eV)$	$E_g(eV)$	Δ(Å)	electrical conductivity
6-ACBNNR with 33%-C + HF	-3.295	0.849	1.533	semiconductor
8-ZCBNNR with 25%-C + HF	-3.350	0.875	0.734	semiconductor
B-rich 6-ACBNNR with 33%-C + HF	-3.569	0	1.661	metal
B-rich 8-ZCBNNR with 25%-C + HF	-3.300	0	0.773	metal

Table S11: NH₃ molecule adsorbed on 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, Brich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C: the bond length of gas molecule (L), adsorption distance of nearest-neighbor atoms between the gas molecule and substrate (D), the angle of gas molecule (α), charge transfer between gas molecule and substrate (ΔQ), the sign "-" means that the molecule is the acceptor of the charge and the sign "+" means the molecule is the donor of the charge, and adsorption energy (E_{ads}). The words "before" and "after" express the characteristics of the gas molecule before and after gas molecule adsorption, respectively.

NH ₃ molecule adsorption									
substrate	bstrate L (Å) D (Å) \alpha (°)		(°)	$\Delta Q(e)$	$E_{ads}(eV)$	Type of adsorption			
	before	after	before	after	before	after			uusoi ption
6-ACBNNR with 33%-C	N-H1 =1.041	N-H1 =1.042	2.455	3.077	H1-N-H2 =105.504	H1-N-H2 =105.788	+0.030	-1.542	physisorption
		N-H2 =1.041				H1-N-H3 =105.515			
		N-H3 =1.041				H2-N-H3 =105.585			
8-ZCBNNR with 25%-C	N-H2 =1.041	N-H1 =1.043	2.000	2.884	H1-N-H3 =105.504	H1-N-H2 =106.068	+0.034	-0.973	physisorption
		N-H2 =1.042				H1-N-H3 =106.140			
		N-H3 =1.039				H2-N-H3 =105.893			
B-rich 6-ACBNNR with 33%-C	N-H3 =1.041	N-H1 =1.047	2.134	1.699	H2-N-H3 =105.512	H1-N-H2 =108.661	+0.404	-2.411	chemisorption
		N-H2 =1.051				H1-N-H3 =108.391			
		N-H3 =1.043				H2-N-H3 =109.365			
B-rich 8-ZCBNNR with 25%-C		N-H1 =1.043	2.133	1.706		H1-N-H2 =108.434	+0.405	-1.492	chemisorption
		N-H2 =1.060				H1-N-H3 =109.162			
		N-H3 =1.043				H2-N-H3 =108.434			

Table S12: Fermi energy (E_F) , energy band gap (E_g) , structural deformation (Δ) and electrical conductivity of 6-ACBNNR with 33%-C, 8-ZCBNNR with 25%-C, B-rich 6-ACBNNR with 33%-C and B-rich 8-ZCBNNR with 25%-C after NH₃ molecule adsorption.

system	$E_F(eV)$	$E_g(eV)$	Δ(Å)	electrical conductivity
6-ACBNNR with 33%-C + NH ₃	-3.158	0.857	1.546	semiconductor
8-ZCBNNR with 25%-C + NH ₃	-3.000	0.849	0.766	semiconductor
B-rich 6-ACBNNR with 33%-C + NH ₃	-2.860	0	1.610	metal
B-rich 8-ZCBNNR with 25%-C + NH ₃	-2.760	0	0.865	metal

Table S13: SF (sensitivity factor) for tow semiconductor structures, 6-ACBNNR with 33%-C and 8-ZCBNNR with 25%-C.

system	SF (sensitivity factor)	system	SF (sensitivity factor)
6-ACBNNR with 33%-C + CO	14.98%	8-ZCBNNR with 25%-C + CO	3.88%
6-ACBNNR with 33%-C + CO ₂	14.98%	8-ZCBNNR with 25%-C + CO ₂	1.88%
6-ACBNNR with 33%-C + H ₂ S	12.61%	8-ZCBNNR with 25%-C + H ₂ S	2.88%
6-ACBNNR with 33%-C + HF	11.56%	8-ZCBNNR with 25%-C + HF	2.88%
6-ACBNNR with 33%-C + NH ₃	12.61%	8-ZCBNNR with 25%-C + NH ₃	5.77%

Table S14: CO molecule adsorbed at the distance of 3 Å above 8-ZCBNNR with 25%-C: the bond length of gas molecule (L), adsorption distance of nearest-neighbor atoms between the gas molecule and substrate (D), the angle of gas molecule (α), charge transfer between gas molecule and substrate (ΔQ), the sign "-" means that the molecule is the acceptor of the charge and the sign "+" means the molecule is the donor of the charge, and adsorption energy (E_{ads}). The words "before" and "after" express the characteristics of the gas molecule before and after gas molecule adsorption, respectively.

CO molecule adsorption at the distance of 3 Å									
substrate	L (Å) D (Å)		Å)	α (°)		$\Delta Q(e)$	$E_{ads}(eV)$	Type of adsorption	
	before	after	before	after	before	after			-
8-ZCBNNR with 25%-C	1.145	1.149	3.561	2.958	-	-	- 0.013	-0.950	physisorption

Table S15: Fermi energy (E_F) , energy band gap (E_g) , structural deformation (Δ) and electrical conductivity of 8-ZCBNNR with 25%-C after CO molecule adsorption at the distance of 3 Å.

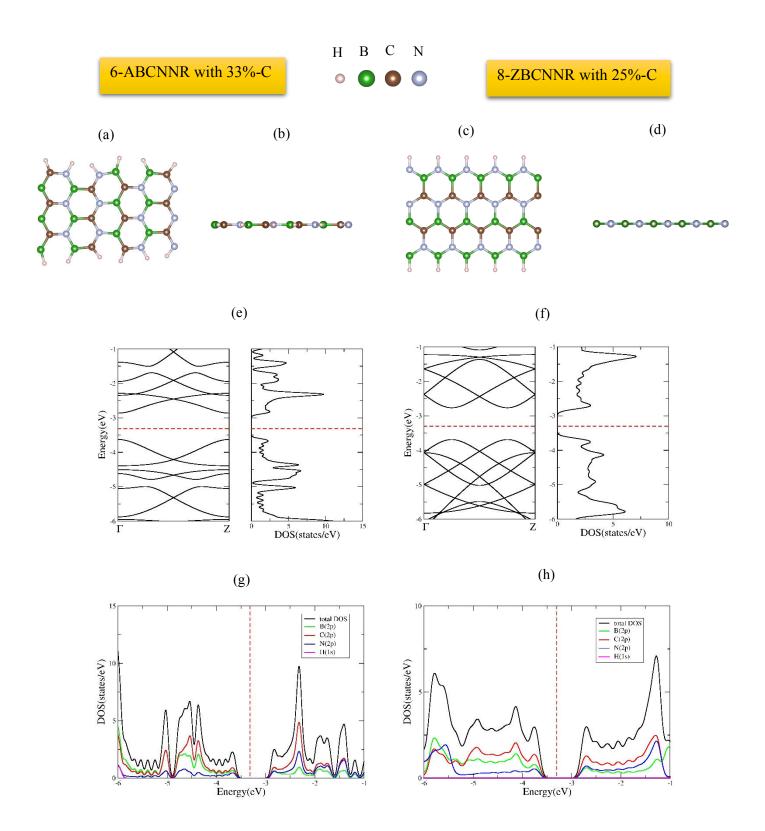

system	$E_F(eV)$	$E_g(eV)$	Δ(Å)	electrical conductivity
8-ZCBNNR with 25%-C + CO	-3.5	0.857	0.738	semiconductor

Table S16: NH₃ molecule adsorbed at the distance of 3 Å above 8-ZCBNNR with 25%-C: the bond length of gas molecule (L), adsorption distance of nearest-neighbor atoms between the gas molecule and substrate (D), the angle of gas molecule (α), charge transfer between gas molecule and substrate (ΔQ), the sign "-" means that the molecule is the acceptor of the charge and the sign "+" means the molecule is the donor of the charge, and adsorption energy (E_{ads}). The words "before" and "after" express the characteristics of the gas molecule before and after gas molecule adsorption, respectively.

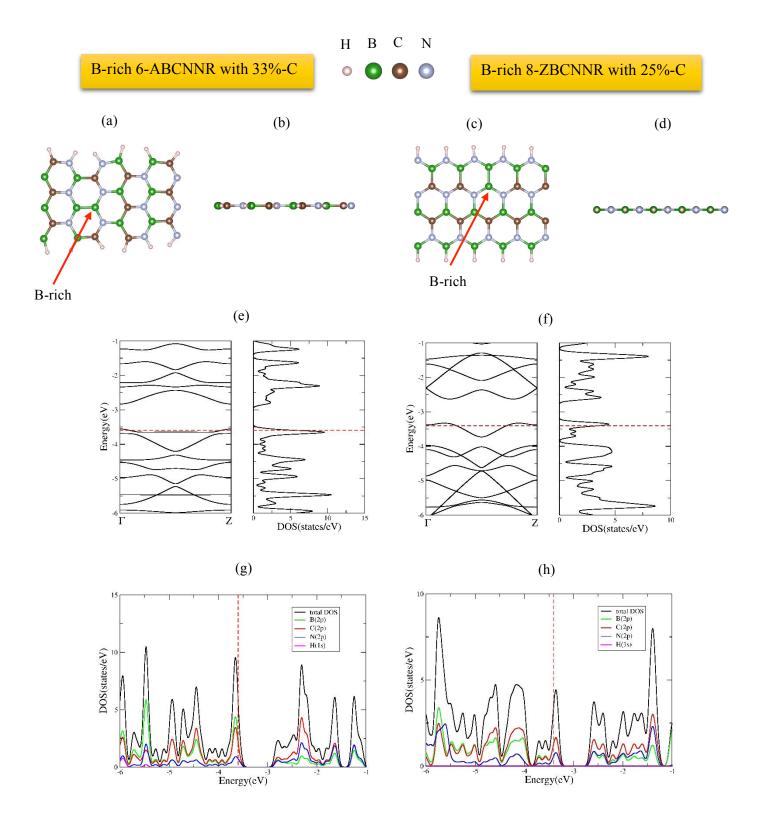

NH_3 molecule adsorption at the distance of 3 $\mbox{\normale}A$									
substrate	L (Å)	D (.	Å)	α (°)		$\Delta Q(e)$	$E_{ads}(eV)$	Type of adsorption
	before	after	before	after	before	after			uusorp.
8-ZCBNNR with 25%-C	N-H2 =1.041	N-H1 =1.042	3.372	2.832	H1-N-H3 =105.504	H1-N-H2 =105.867	+ 0.053	-0.907	physisorption
		N-H2 =1.041				H1-N-H3 =106.093			
		N-H3 =1.041				H2-N-H3 =106.231			

Table S17: Fermi energy (E_F) , energy band gap (E_g) , structural deformation (Δ) and electrical conductivity of 8-ZCBNNR with 25%-C after NH₃ molecule adsorption at the distance of 3 Å.

system	$E_F(eV)$	$E_g(eV)$	Δ(Å)	electrical conductivity
8-ZCBNNR with 25%-C + NH ₃	-3.00	0.848	0.755	semiconductor

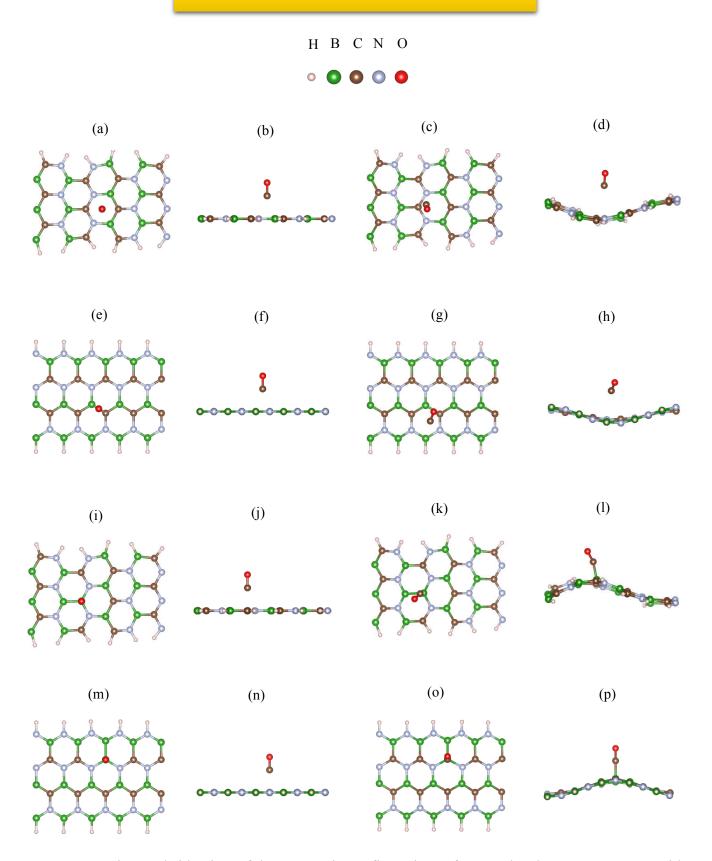


Fig. S1 Top view and side view of the geometric configurations of 6-ACBNNR with 33%-C (a, b) and 8-ZCBNNR with 25%-C (c, d), band structure and DOS of 6-ACBNNR with 33%-C (e) and 8-ZCBNNR with 25%-C (f), PDOS of 6-ACBNNR with 33%-C (g) and 8-ZCBNNR with 25%-C (h). The Fermi level indicated by the red dashed line

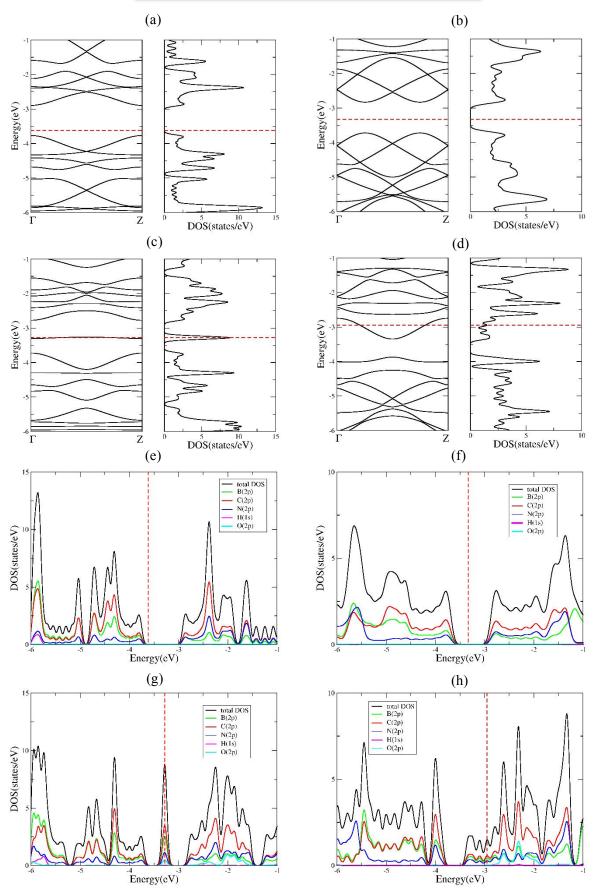


Fig. S2 Top view and side view of the geometric configurations of B-rich 6-ACBNNR with 33%-C (a, b) and B-rich 8-ZCBNNR with 25%-C (c, d), band structure and DOS of B-rich 6-ACBNNR with 33%-C (e) and B-rich 8-ZCBNNR with 25%-C (f), PDOS of B-rich 6-ACBNNR with 33%-C (g) and B-rich 8-ZCBNNR with 50%-C (h). The Fermi level indicated by the red dashed line.

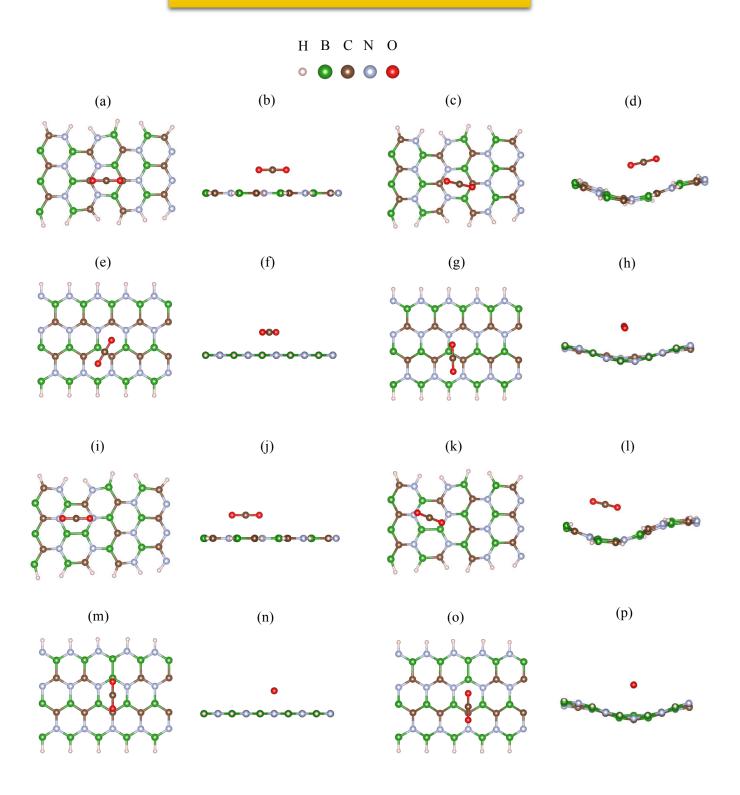

7

Fig. S3 Top view and side view of the geometric configurations of CO molecule on 6-ACBNNR with 33%-C before (a, b) and after (c, d) optimization, 8-ZCBNNR with 25%-C before (e, f) and after (g, h) optimization, B-rich 6-ACBNNR with 33%-C before (i, j) and after (k, l) optimization, B-rich 8-ZCBNNR with 25%-C before (m, n) and after (o, p) optimization.

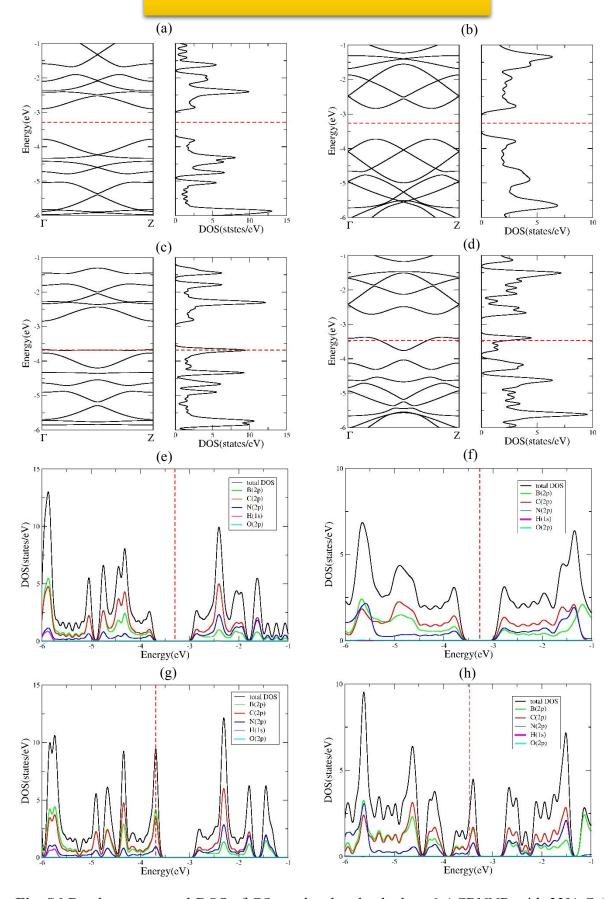
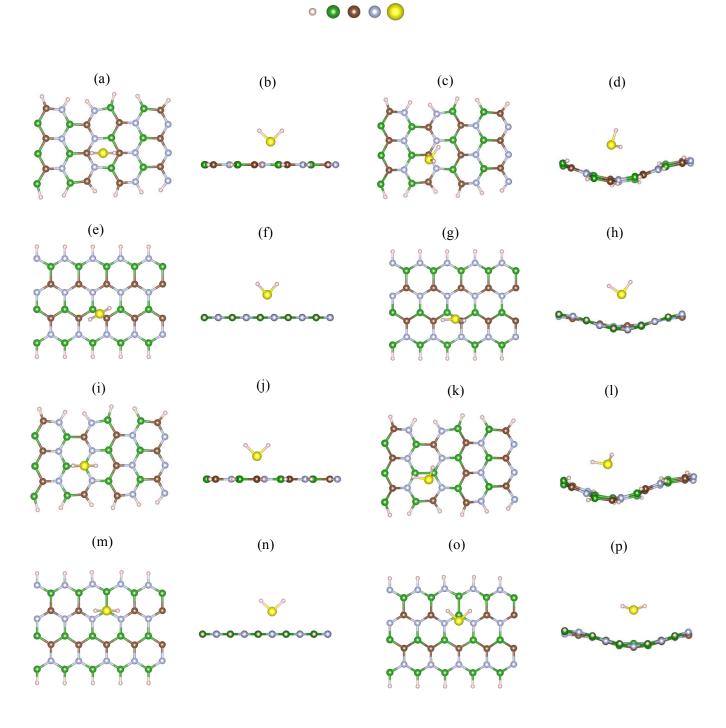
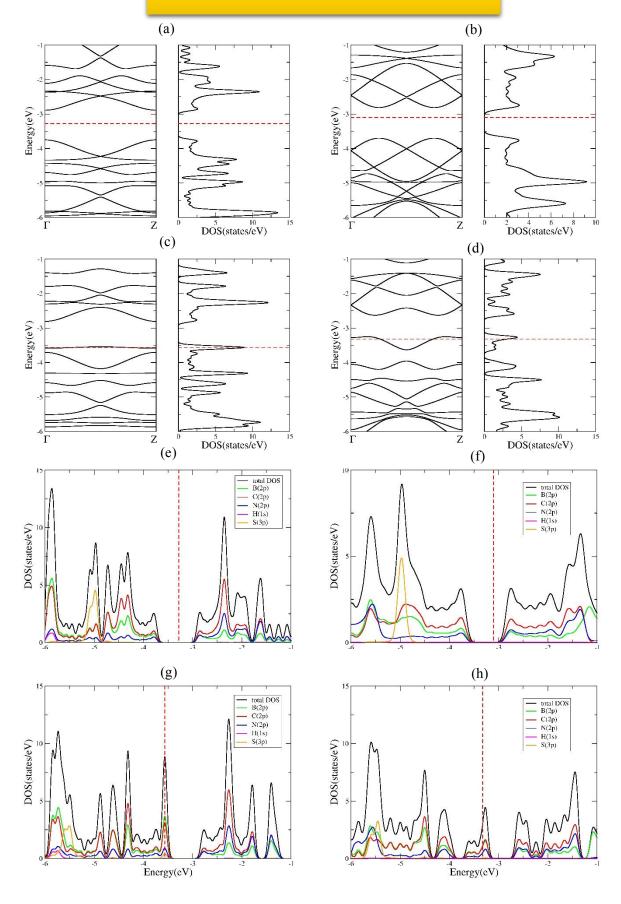


Fig. S4 Band structure and DOS of CO molecule adsorbed on 6-ACBNNR with 33%-C (a), 8-ZCBNNR with 25%-C (b), B-rich 6-ACBNNR with 33%-C (c), B-rich 8-ZCBNNR with 25%-C (d). PDOS of CO molecule adsorbed on 6-ACBNNR with 33%-C (e), 8-ZCBNNR with 25%-C (f), B-rich 6-ACBNNR with 33%-C (g), B-rich 8-ZCBNNR with 25%-C (h). The Formi level indicated by the red deshed line.


Fig. S5 Top view and side view of the geometric configurations of CO₂ molecule on 6-ACBNNR with 33%-C before (a, b) and after (c, d) optimization, 8-ZCBNNR with 25%-C before (e, f) and after (g, h) optimization, B-rich 6-ACBNNR with 33%-C before (i, j) and after (k, l) optimization, B-rich 8-ZCBNNR with 25%-C before (m, n) and after (o, p) optimization.

Electronic Properties Of CO₂ Molecule Adsorption


Fig. S6 Band structure and DOS of CO₂ molecule adsorbed on 6-ACBNNR with 33%-C (a), 8-ZCBNNR with 25%-C (b), B-rich 6-ACBNNR with 33%-C (c), B-rich 8-ZCBNNR with 25%-C (d). PDOS of CO molecule adsorbed on 6-ACBNNR with 33%-C (e), 8-ZCBNNR with 25%-C (f), B-rich 6-ACBNNR with 33%-C (g), B-rich 8-ZCBNNR with 25%-C (h). The Fermi level indicated by the red dashed line

H B C N S

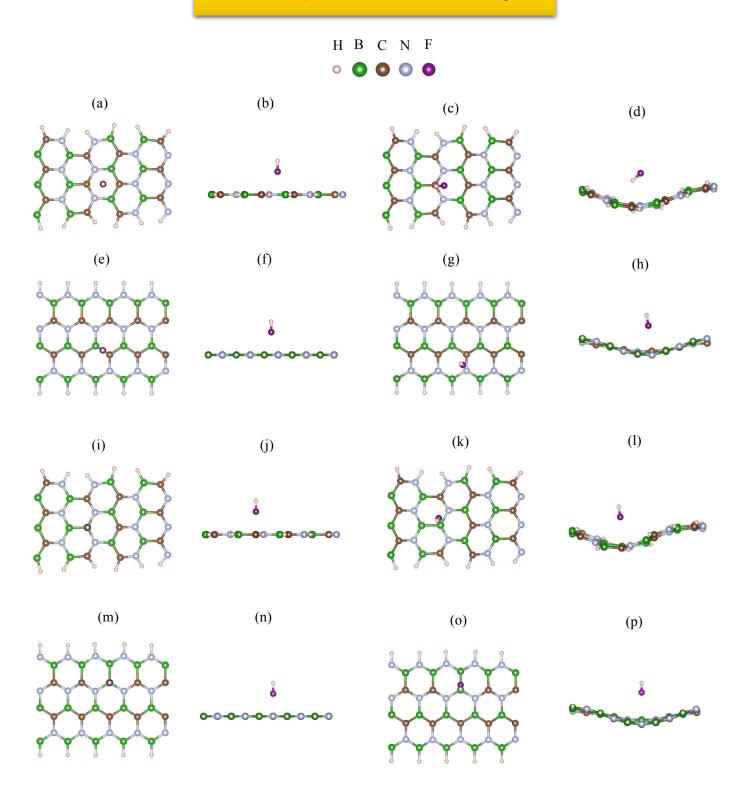


Fig. S7 Top view and side view of the geometric configurations of H_2S molecule on 6-ACBNNR with 33%-C before (a, b) and after (c, d) optimization, 8-ZCBNNR with 25%-C before (e, f) and after (g, h) optimization, B-rich 6-ACBNNR with 33%-C before (i, j) and after (k, l) optimization, B-rich 8-ZCBNNR with 25%-C before (m, n) and after (o, p) optimization.

Electronic Properties Of H₂S Molecule Adsorption



Fig. S8 Band structure and DOS of H₂S molecule adsorbed on 6-ACBNNR with 33%-C (a), 8-ZCBNNR with 25%-C (b), B-rich 6-ACBNNR with 33%-C (c), B-rich 8-ZCBNNR with 25%-C (d). PDOS of CO molecule adsorbed on 6-ACBNNR with 33%-C (e), 8-ZCBNNR with 25%-C (f), B-rich 6-ACBNNR with 33%-C (g), B-rich 8-ZCBNNR with 25%-C (h). The Formi level indicated by the red declared line.

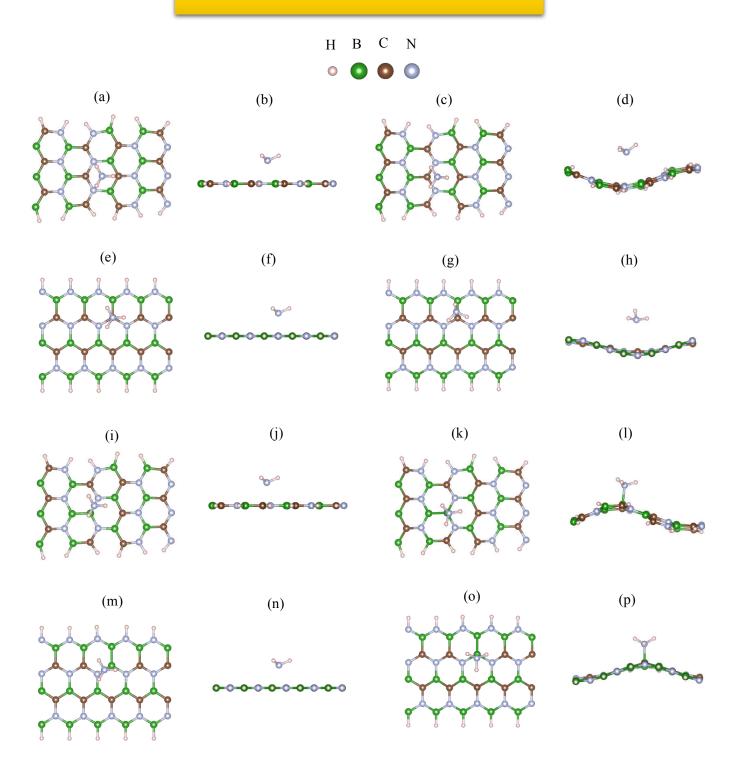
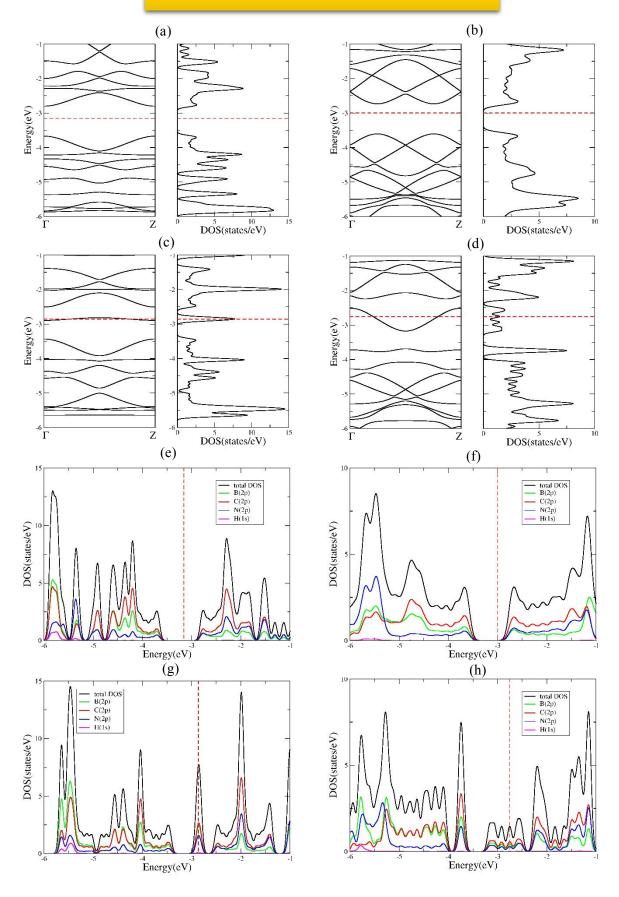


Fig. S9 Top view and side view of the geometric configurations of HF molecule on 6-ACBNNR with 33%-C before (a, b) and after (c, d) optimization, 8-ZCBNNR with 25%-C before (e, f) and after (g, h) optimization, B-rich 6-ACBNNR with 33%-C before (i, j) and after (k, l) optimization, B-rich 8-ZCBNNR with 25%-C before (m, n) and after (o, p) optimization.


Electronic Properties Of HF Molecule Adsorption

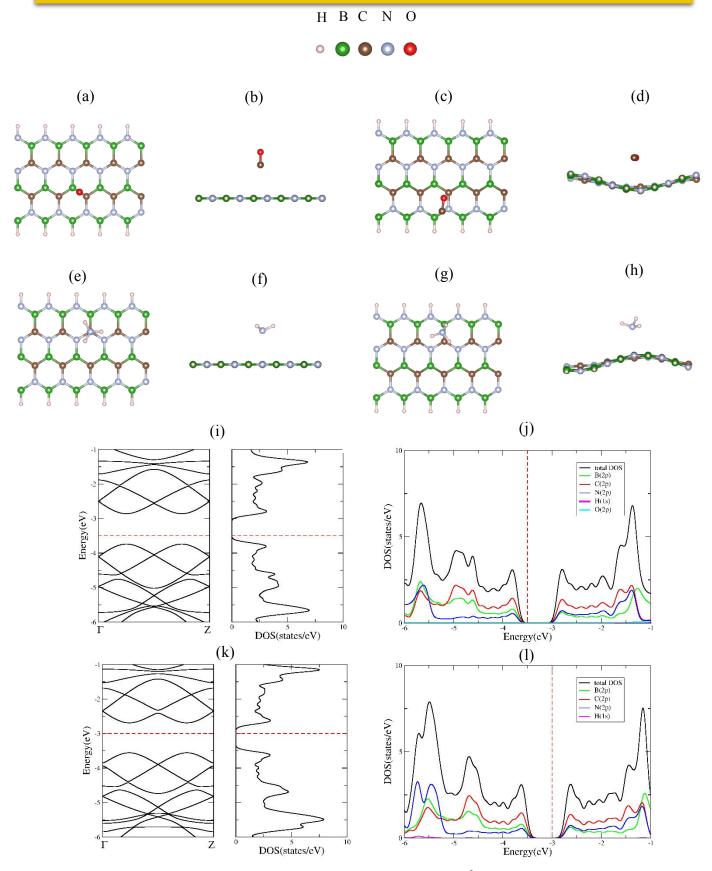

Fig. S10 Band structure and DOS of HF molecule adsorbed on 6-ACBNNR with 33%-C (a), 8-ZCBNNR with 25%-C (b), B-rich 6-ACBNNR with 33%-C (c), B-rich 8-ZCBNNR with 25%-C (d). PDOS of CO molecule adsorbed on 6-ACBNNR with 33%-C (e), 8-ZCBNNR₂₅ with 25%-C (f), B-rich 6-ACBNNR with 33%-C (g), B-rich 8-ZCBNNR with 25%-C (h). The Fermi level indicated by the red dashed line.

Fig. S11 Top view and side view of the geometric configurations of NH₃ molecule on 6-ACBNNR with 33%-C before (a, b) and after (c, d) optimization, 8-ZCBNNR with 25%-C before (e, f) and after (g, h) optimization, B-rich 6-ACBNNR with 33%-C before (i, j) and after (k, l) optimization, B-rich 8-ZCBNNR with 25%-C before (m, n) and after (o, p) optimization.

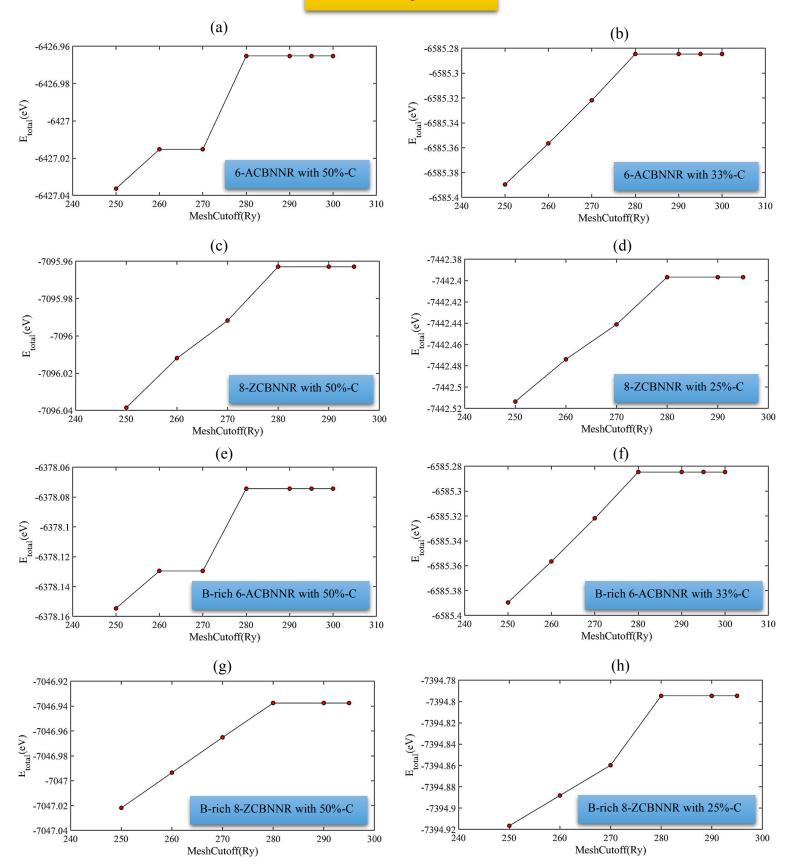


Fig. S12 Band structure and DOS of NH₃ molecule adsorbed on 6-ACBNNR with 33%-C (a), 8-ZCBNNR with 25%-C (b), B-rich 6-ACBNNR with 33%-C (c), B-rich 8-ZCBNNR with 25%-C (d). PDOS of CO molecule adsorbed on 6-ACBNNR with 33%-C (e), 8-ZCBNNR with 25%-C (f), B-rich 6-ACBNNR with 33%-C (g), B-rich 8-ZCBNNR with 25%-C (h). The

Fig. S13 Investigation of adsorption of molecule at the distance of 3 Å above nanoribbon: Top view and side view of the geometric configurations of CO molecule on 8-ZCBNNR with 25%-C before (a, b) and after (c, d) optimization and top view and side view of the geometric configurations of NH₃ molecule on 8-ZCBNNR with 25%-C before (e, f) and after (g, h) optimization. (i) Band structure and DOS and (j) PDOS of CO molecule adsorbed on 8-ZCBNNR with 25%-C. (k) Band structure and DOS and (l) PDOS of NH₃ molecule adsorbed on 8-ZCBNNR with 25%-C. The Fermi level indicated by the red dashed line.

Mesh Cutoff Optimization

Fig. S14 The optimized mesh cutoff energy of 6-ACBNNR with 50%-C (a), 6-ACBNNR with 33%-C (b), 8-ZCBNNR with 50%-C (c), 8-ZCBNNR with 25%-C (d), B-rich 6-ACBNNR with 50%-C (e), B-rich 6-ACBNNR with 33%-C (f), B-rich 8-ZCBNNR with 50%-C (g) and B-rich 8-ZCBNNR with 25%-C (h). For all nanoribbons, the optimized mesh cutoff energy is set at 280 Ry.