Supporting Imformation

Study into interface engineering and chemical bond of the ReS₂@ZnO Heterointerface for efficient charge transfer and nonlinear optical conversion efficiency

Xin-Yu Zheng¹, Hong-Yu Li¹, Bing-Yin Shi¹, Hong-Xu Cao¹, Yu Liu¹, and Hai-Tao Yin^{1,*}

¹Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China *Corresponding author: wlyht@126.com

Fig. S1. SEM images of ZnO and ReS₂@ZnO at different condition: a_i) ZnO-80°C, a_{ii}) ZnO-215°C, a_{iii}) ZnO-215°C, b_i) ReS₂-0.2mmol@ZnO-80°C, b_{ii}) ReS₂-0.2mmol@ZnO-215°C, b_i) ReS₂-

 $0.2 mmol @ZnO-350^{\circ}C, c_i) \ ReS_2-0.4 mmol @ZnO-80^{\circ}C, c_{ii}) \ ReS_2-0.4 mmol @ZnO-215^{\circ}C, c_i) \ ReS_2-0.4 mmo$

0.4mmol@ZnO-350°C.

Fig. S2. EDS images of (a_i) ReS₂-0.2mmol, (a_{ii}) ReS₂-0.3mmol, (a_{iii}) ReS₂-0.4mmol, (b_i) ReS₂-0.2mmol@ZnO-80°C, (b_{ii}) ReS₂-0.3mmol@ZnO-80°C, (b_{ii}) ReS₂-0.4mmol@ZnO-80°C, (c_i) ReS₂-0.2mmol@ZnO-215°C, (b_{ii}) ReS₂-0.3mmol@ZnO-215°C, (b_{iii}) ReS₂-0.4mmol@ZnO-215°C, (d_i) ReS₂-0.2mmol@ZnO-350°C, (d_i) ReS₂-0.3mmol@ZnO-350°C, (d_i) ReS₂-0.4mmol@ZnO-350°C, (e_i) ReS₂-0.2mmol@ZnO-350°C, (e_i) ReS₂-0.3mmol@ZnO-350°C, (e_i) ReS₂-0.4mmol@ZnO-350°C, (e_i) ReS₂-0.2mmol@ZnO-temperature, (e_{ii}) ReS₂-0.3mmol@ZnO-temperature, (b_{iii}) <u>ReS₂-0.4mmol@ZnO-</u>

temperature.

Fig. S3. XRD images of (a_i) ZnO-80°C, (a_{ii}) ZnO-215°C, (a_{iii}) ZnO-350°C.

Fig. S4. XRD images of (a) ReS₂-0.2mmol, ReS₂-0.2mmol @ ZnO-temperature. (c) ReS₂-0.4mmol, ReS₂-0.4mmol @ ZnO-temperature. Growth orientation of (b_i) ReS₂-0.2mmol, (b_{ii}) ReS₂-0.2mmol@ZnO-80 °C, (b_{iii}) ReS₂-0.2mmol@ZnO-215°C, (b_{iv})ReS₂-0.3mmol@ZnO-350°C, (d_i) ReS₂-0.2mmol@ZnO-350°C, (d_i) ReS₂-0.2mmol@ZnO-215°C, (b_{iv})ReS₂-0.3mmol@ZnO-350°C, (d_i) ReS₂-0.2mmol@ZnO-215°C, (b_{iv})ReS₂-0.3mmol@ZnO-350°C, (d_i) ReS₂-0.2mmol@ZnO-215°C, (b_{iv})ReS₂-0.3mmol@ZnO-350°C, (d_i) ReS₂-0.2mmol@ZnO-350°C, (d_i) ReS₂-0.2mmol@ZnO-30°C, (d_i) ReS₂-0.2mmol@ZnO-3

0.2mmol, (d_{ii}) ReS₂-0.2mmol@ZnO-80 °C, (d_{iii}) ReS₂-0.2mmol@ZnO-215°C, (d_{iv})ReS₂-

0.3mmol@ZnO-350°C.

Fig. S5. XRD images of Si substrate.

Fig. S6. Energy levels diagram of ReS₂ and ZnO (a). The Gaussian fitted PL emission spectra of ReS₂-0.2mmol @ ZnO-215 °C (b), ReS₂-0.3mmol @ ZnO-215 °C (c) and ReS₂-0.4mmol @ ZnO-215 °C (d).

Table S1. Time of attenuation of transient absorption dynamics

Samples	$ au_1$ (ps)	$ au_2$ (ps)	$ au_3$ (ps)	$ au_4$ (ps)	
ReS ₂	1.89	2.6	2.2×10^{3}	-	
ReS ₂ @ZnO	0.88	2.67	1×10^{4}	7.3×10^{6}	