Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary Materials

Boiling, Critical and Freezing Temperatures in Light of Molecular

Descriptors: Correlation and Causation

Ossama Abdeen, Mohamed Ismael*, Aly Abdou*

Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt

Corresponding authors:

Mohamed Ismael (m_ismael@science.sohag.edu.eg)

Aly Abdou (aly_abdou@science.sohag.edu.eg)

Supplementary Tables

Table S1*:

The available experimental normal boiling points (NBPs), critical temperatures (CTs) and normal freezing points (NFPs) in Kelvins of 169 compounds tabulated against molecular surface descriptors as defined in Methodology section.

Fluid	Group	NBP	СТ	NFT	A	Γ_s	Pav	L_{av}	Γ_m	σ _{r,ep}	S	g	g
Не	Ι	4.22	5.20		22.8	0	0.91	20.3	0	0	0	0	-
Ne	Ι	27.10	44.40	24.56	29.1	0	1.18	1.3	0	0	0	0	-
Ar	Ι	87.50	150.86	83.80	49.9	0	2.90	5.2	0	0	0	0	-
Kr	Ι	119.73	209.48	115.78	57.8	0	3.80	7.5	0	0	0	0	-
Xe	Ι	165.05	289.73	161.40	70.1	0	5.27	12.7	0	0	0	0	-
H_2	Ι	20.37	33.18	13.99	32.4	2,850	2.02	28.9	108	0.89	0	1	-
N_2	Ι	77.40	126.19	63.30	54.4	6,923	3.02	8.5	79	0.84	0	1	-
СО	Ι	81.63	134.45	68.05	55.0	41,752	3.14	13.1	419	2.69	0	1	-
F_2	Ι	85.20	144.00	55.20	47.0	4,290	2.14	2.5	111	0.78	0	1	-
O ₂	Ι	90.20	154.58	54.80	50.3	0	2.60	3.8	5	0	1	1	-
NO	Ι	121.41	180.30	109.55	52.0	15,711	2.78	6.6	255	1.91	1	1	-
FCl	Ι	173.10		117.60	64.2	56,075	3.66	7.4	937	3.01	0	1	-
HCl	Ι	188.00	324.70	158.98	58.0	99,315	3.84	8.6	1,387	3.08	0	1	-
HBr	Ι	206.77	363.20	186.35	65.2	89,370	4.73	11.2	956	2.62	0	1	-
HI	Ι	237.60	424.00	222.39	77.0	83,420	6.20	17.1	607	2.14	0	1	-
Cl ₂	Ι	239.50	416.96	171.65	80.6	38,474	5.26	9.8	390	1.35	0	1	-
ClBr	Ι	278.15		207.15	86.9	58,434	6.01	11.7	614	2.16	0	1	-
HF	Ι	292.70	461.00	190.00	36.5	180,771	1.83	2.8	5,012	6.39	0	1	-
Br_2	Ι	331.95	588.15	201.15	93.2	69,578	6.78	13.2	583	1.59	0	1	-
ClI	Ι	370.15		300.53	97.5	105,151	7.28	16.7	863	3.51	0	1	-
IBr	Ι	389.15		313.15	103.7	97,744	8.07	17.8	734	2.33	0	1	-
OF ₂	Ι	127.90		49.40	61.4	18,500	2.88	3.7	235	1.54	0	2	-
O ₃	Ι	161.30	261.15	80.70	64.4	58,205	3.40	4.9	587	3.28	0	2	-
N_2O	Ι	184.68	309.56	182.35	66.8	85,470	3.66	6.1	648	3.60	0	2	-
CO ₂	Ι	194.69	304.18		64.6	169,433	3.40	4.6	1,391	3.76	0	1	-
SH_2	Ι	212.87	373.30	190.85	66.1	134,393	4.73	13.5	1,013	4.24	0	2	-
FNO	Ι	213.25			64.6	371,518	3.25	5.5	2,457	6.11	0	2	-
SOC	Ι	222.95	378.80	134.35	83.4	86,094	5.34	10.6	553	4.17	0	1	-
FCN	Ι	227.15		191.15	66.8	312,246	3.65	6.4	2,091	5.71	0	1	-
H_2Se	Ι	231.90	411.00	207.42	72.0	111,189	5.50	16.2	722	3.76	0	2	-
OCSe	Ι	251.45	394.25	148.75	88.7	90,120	6.00	12.6	636	3.60	0	1	-
SO_2	Ι	263.14	430.34	200.75	75.8	456,769	4.37	9.0	2,493	5.28	0	2	-
CINO	Ι	267.35	440.65	210.65	83.6	401,496	5.01	9.4	1,598	3.91	0	2	-
Cl ₂ O	Ι	275.35		152.55	93.4	67,131	5.90	11.4	588	2.70	0	2	-
ClO ₂	Ι	284.15	465.00	214.15	75.0	361,329	4.23	6.3	1,921	4.31	1	2	-
CICN	Ι	286.15		266.60	83.6	439,475	5.22	9.5	2,383	5.37	0	1	-
NO ₂	Ι	295.08	430.95	261.95	64.5	79,616	3.41	5.0	771	2.27	1	2	-
HCN	Ι	299.15	456.70	259.86	61.1	449,947	3.78	9.7	4,107	7.66	0	1	-
CS_2	Ι	319.35	552.00	161.45	101.3	24,706	7.44	15.3	147	0.79	0	1	-
BrCN	Ι	334.65		325.15	89.8	518,901	5.94	11.6	2,744	6.13	0	1	-
H2O	Ι	373.15	647.10	273.15	44.3	259,249	2.56	5.0	3,776	8.09	0	2	-

Fluid	Group	NBP	СТ	NFT	A	Γ_s	P_{av}	L_{av}	Γ _m	σ _{r,ep}	S	g	$g^{'}$
CSe ₂	Ι	398.65		229.55	111.3	44,880	8.89	18.3	249	0.93	0	1	-
NF ₃	II	144.00	234.00	64.70	72.2	19,607	3.38	5.4	250	1.12	0	-	2
PF ₃	II	171.35	271.20	121.65	84.5	244,452	4.39	12.0	1,426	3.12	0	-	2
BF ₃	II	173.25	260.95	146.35	73.0	147,871	3.46	3.6	2,123	2.54	0	-	1
PH ₃	II	185.40	324.50	139.35	73.3	48,356	5.35	21.3	473	2.65	0	-	2
F ₂ CO	II	188.65	287.85	161.95	73.5	140,014	3.56	4.3	1,661	6.13	0	-	1
FNO ₂	II	200.80	349.45	107.20	75.5	88,531	3.77	4.6	907	3.54	0	-	1
AsH ₃	II	210.65	373.05	157.15	77.8	27,816	5.89	23.8	304	2.54	0	-	2
NH ₃	II	239.82	405.40	194.95	52.2	183,473	3.26	8.3	2,342	5.87	0	-	2
HFCO	II	246.65		130.95	68.0	405,976	3.57	7.0	2,846	6.50	0	-	1
NHF ₂	II	250.00	403.00	157.15	65.8	274,387	3.27	6.6	2,845	4.09	0	-	2
CNCN	II	252.05	397.00	245.32	88.2	252,155	5.38	9.8	1,165	4.58	0	-	0
CINO ₂	II	257.25		128.15	91.9	117,007	5.30	8.5	687	2.95	0	-	1
ClO ₂ F	II	267.15		158.15	85.0	385,349	4.44	6.3	2,629	5.10	0	-	2
Cl ₂ CO	II	280.71	455.00	145.37	104.9	198,558	6.48	10.9	968	5.06	0	-	1
ClF ₃	II	284.90	426.20	196.81	84.1	377,426	4.18	5.4	2,043	4.99	0	-	1
BCl ₃	II	285.75	455.15	166.15	120.5	57,147	7.89	13.8	404	1.48	0	-	1
SO ₃	II	317.65	491.00	289.95	84.6	279,896	4.52	5.5	2,442	3.14	0	-	1
BrO ₂ F	II	328.15		264.15	91.2	737,639	4.96	7.3	3,901	4.74	0	-	2
H ₂ CO	II	329.23	508.00	178.25	62.8	456,331	3.69	9.9	2,861	5.95	0	-	1
AsF ₃	II	330.28		267.25	89.1	754,821	4.75	12.1	3,234	4.96	0	-	2
NCl ₃	Π	344.15		233.15	116.7	92,088	7.66	13.6	467	1.90	0	-	2
PCl ₃	Π	349.15	563.00	180.15	129.4	120,693	8.72	17.4	402	1.80	0	-	2
BBr ₃	II	364.45	573.15	227.15	137.4	87,510	9.97	18.2	351	1.59	0	-	1
BrF ₃	Π	398.95		281.92	89.5	605,150	4.64	7.0	3,274	6.76	0	-	1
AsCl ₃	Π	403.15	654.00	257.15	134.7	327,976	9.19	18.0	960	2.78	0	-	2
PBr ₃	Π	446.35	711.00	231.65	146.4	163,856	10.84	20.7	368	1.71	0	-	2
BI ₃	Π	482.65		322.85	166.0	146,591	13.62	29.6	298	1.61	0	-	1
AsBr ₃	Π	494.15		304.25	151.4	330,190	11.32	21.4	725	2.44	0	-	2
CH ₄	III	111.00	190.60	90.60	59.7	4.966	3.73	14.3	62	0.57	0	-	-
CF4	III	145.10	227.50	89.57	81.3	18,165	3.69	3.8	316	0.61	0	_	_
SiH₄	III	161.15	269.69	88.15	80.5	2.926	5.63	30.4	141	0.17	0	_	_
- SiH₃F	Ш	174.55			83.2	222.574	5.13	25.8	1.907	5.12	0	-	-
SiHF ₂	III	178.15		141.75	89.0	360.464	4.56	12.6	1.931	3.85	0	-	-
GeH4	III	183.15	312.20	108.15	83.0	827	5.97	31.3	98	0.10	0	-	-
SiF4	III	187.00	259.00	182.95	92.7	176.656	4.41	4.3	1.487	2.24	0	-	-
CHF ₂	III	191.09	299.01	117.97	75.9	238.080	3.63	6.2	1.628	2.98	0	-	-
CF ₂ Cl	III	191.74	302.00	92.15	96.5	48.005	5.01	7.6	304	1.21	0	-	-
CH ₂ F	III	195.00	317.40	129.85	65.1	268.472	3.60	11.7	1.749	4.25	0	-	-
SiHaFa	Ш	195.00	517.10	151.15	85.9	395.067	4 79	19.9	2 046	4 78	ů 0	_	_
CF ₂ Br	III	215.26	340.15	105.15	102.6	59 841	5.62	96	382	1.32	ů 0	_	_
SnH.	III	213.20	510.15	127.15	93.2	29.833	7.05	38.9	316	0.63	0	_	_
CHaFa	III	221.15	351.26	127.15	70.5	386 448	3 59	9.1	1 893	4.61	0	_	_
	III	221.30	369.30	115 73	91.8	227 101	5.05	9.7	1,095	3.62	0	_	_
SF4	III	232.32	36/ 10	152.00	01 2	227,101	2.03 4.12	Э.1 6 Л	1,210	5.02	0	-	-
GeF.		230.00	504.10	152.00	90.5	201, 14 9 201 827	с т. т. 2 85	0. 4 // //	7 228	2.00	0	-	-
SiF ₄	III	230.70	369.00	229.15	123.5	156 731	7.05 7.15	ד.ד 11 1	2,550 820	2.00	0	-	-
SiH ₂ Cl	III	241.00	507.00	155 15	00 K	202 276	677	26.2	002	2.10	0	-	-
CF ₂ Cl ₂	III	272.13	38/ 05	115 16	110.7	61 260	635	20.5 10.7	302	2.05	0	-	-
01 2012	111	2 43.4 2	504.95	115.10	110.7	01,200	0.55	10./	502	2.23	U	-	-

Fluid	Group	NBP	СТ	NFT	A	Γ_s	Pav	L_{av}	Γ_m	σ _{r,ep}	S	g	g
CH ₃ Cl	III	247.00	416.00	175.55	81.7	281,523	5.24	14.4	1,015	3.40	0	-	-
CF ₃ I	III	251.34	395.00		113.3	101,810	6.68	14.7	543	1.76	0	-	-
CHF ₂ Br	III	257.67	411.98	128.00	98.1	241,008	5.70	11.6	1,171	3.52	0	-	-
CH ₂ FCl	III	264.00	427.00	138.05	86.9	342,702	5.11	12.0	1,484	4.84	0	-	-
CF ₂ ClBr	III	269.14	426.15	113.65	116.6	74,965	6.99	12.5	383	2.30	0	-	-
CH ₃ Br	III	276.60	467.00	179.55	88.1	284,354	5.99	16.0	933	3.44	0	-	-
SiH ₂ Cl ₂	III	281.30	449.15	151.15	117.9	220,235	7.88	22.4	834	2.30	0	-	-
CHFCl ₂	III	282.01	451.60	138.15	106.6	212,484	6.48	12.5	999	3.49	0	-	-
SiFCl ₃	III	285.40	438.41		137.8	84,372	8.54	13.9	441	3.67	0	-	-
CH ₂ FBr	III	292.15			93.2	352,905	5.81	13.8	1,398	4.67	0	-	-
CHF ₂ I	III	295.15		151.15	108.8	272,581	6.83	16.7	1,107	3.72	0	-	-
CF_2Br_2	III	295.94	471.30	163.05	122.5	90,031	7.64	14.2	405	2.31	0	-	-
CFCl ₃	III	296.90	471.10	162.72	123.8	78,012	7.66	13.1	314	2.12	0	-	-
SiHCl ₃	III	306.00	479.00	144.95	135.2	126,055	8.93	19.0	477	1.51	0	-	-
CHFClBr	III	309.26		158.15	112.6	227,527	7.16	14.2	974	3.40	0	-	-
CH_2Cl_2	III	312.90	510.00	178.01	102.2	297,232	6.65	14.6	1,053	3.40	0	-	-
CH ₃ I	III	315.70	527.95	207.00	98.8	291,472	7.27	20.6	814	3.22	0	-	-
CH ₂ FI	III	326.00			104.0	373,703	7.00	18.6	1,271	4.55	0	-	-
SiCl ₄	III	330.80	508.10	204.41	151.3	37,022	9.91	16.3	193	0.58	0	-	-
CHCl ₃	III	334.33	536.40	209.68	120.2	195,743	7.89	14.8	752	2.41	0	-	-
CHFBr ₂	III	338.00		195.15	118.5	244.057	7.85	15.9	953	3.32	0	-	-
CH ₂ ClBr	III	341.20	557.00	185.20	108.3	302.798	7.37	16.2	989	3.21	0	-	-
CCl ₄	III	349.79	556.35	250.33	135.7	96.091	8.91	15.0	268	1.13	0	-	-
CFClBr ₂	Ш	353.00			135.0	113.691	8.97	16.3	419	2.15	0	_	_
GeCl	III	359.70	553.20	221.65	157.3	58.238	10.39	17.2	290	0.70	0	_	-
CHCl ₂ Br	III	363.20		216.00	126.0	209.682	8.57	16.4	737	2.30	0	-	-
CH ₂ Br ₂	III	370.15	610.00	221.05	114.2	309.286	8.11	17.8	926	3.03	0	-	-
CF2I2	III	374.15		201.15	142.8	157,790	9.94	23.3	540	2.73	0	_	_
CHFBrI	III	376.00			128.7	274.741	9.03	20.5	927	3.37	0	-	-
CHFL	III	373.45		238.65	138.8	306.757	10.23	24.8	898	3.35	0	-	-
CCl ₂ Br	III	376.65		267 55	141 1	114 585	9.56	16.4	349	1 18	0	-	-
CFBr ₂	III	379.50		199.15	140.5	135.052	9.63	17.7	438	2.13	ů 0	-	-
CH ₂ CII	III	382.00		1777.10	118.6	320 557	8 59	20.8	904	2.13	ů 0	-	-
SnCl ₄	III	387.30	591 90	239.08	168.6	110 895	11 29	18.2	598	0.82	ů 0	_	-
CHClBr ₂	III	393.00	571.70	253.15	131.6	225 740	9.26	17.9	725	2.23	ů 0	-	-
CHCl	III	404.00		200.10	135.9	236.083	9.20	20.8	724	2.23	ů 0	_	-
CH ₂ BrI	III	409.15		274.00	124 5	328 156	9 35	20.0	855	2.21	ů 0	-	-
CHBr ₂	III	422.35	696.00	281.20	137.2	243 776	9.96	19.3	711	2.78	ů 0	-	-
CCl ₂ Br ₂	III	423 35	0,0.00	311.15	146.4	135 735	10.21	17.8	366	1 23	ů 0	_	-
SiBr.	III	427.00	663.00	278 54	172.4	94 003	12 51	21.5	194	0.85	0	_	-
CH ₄	III	427.00	005.00	270.54	134.6	347 820	10.62	21.5	784	2.56	0		
GeBr.	III	459.15	718.00	279.15	178.3	119 420	13.04	20.5	263	0.98	0	_	_
	III	473.00	/10.00	269.15	151.1	283 703	11.63	26.1	203 694	2.03	0	_	_
SnBr.		478.00	744.00	304.00	180.8	142 004	14.00	24.0	436	0.03	0	-	_
		-70.00	/++.00	265 25	150.5	145 171	10.67	24.0	450 165	1 37	0	-	-
	111	270.11	160.05	203.33	150.5 80 Z	140,471 271 977	6.01	10.5	1 014	2.61	0	-	-
снзоп СН.ОЧ	111 TTT	217.11	517 64	175 47	70.0	271,047	1.24	10.2	2 514	5.04 7.16	0	-	-
CH NH	111	221.83 266.92	J12.04	1/3.4/	70.9 77 1	203,003	4.24	12.0	2,314 1.694	7.10 5.20	0	-	-
	111	200.82	430.03	1/9.09	//.1	7 100	4.04	14.8	1,084	0.58	0	-	-
CH ₃ CH ₃	IV	184.55	305.32	90.35	83.5	/,199	5.26	19.3	49	0.67	0	-	-

Fluid	Group	NBP	СТ	NFT	A	Γ	Pav	L_{av}	Γ_m	σ _{r,ep}	S	g	$g^{'}$
CH ₃ CH ₂ F	IV	235.45	375.31	129.95	88.4	334,482	5.13	16.6	1,512	4.14	0	-	-
CH ₂ FCH ₂ F	IV	283.65			93.7	485,876	5.06	14.0	1,337	3.86	0	-	-
CH ₃ CH ₂ Cl	IV	285.42	460.35	136.75	103.4	368,419	6.65	18.8	923	3.40	0	-	-
CH ₃ CH ₂ Br	IV	311.50	503.80	154.55	109.4	384,793	7.36	20.1	873	3.46	0	-	-
CH ₃ CH ₂ I	IV	345.45	561.00	162.05	119.6	399,077	8.55	24.2	781	3.25	0	-	-
CH ₂ ClCH ₂ Cl	IV	356.59	561.60	237.49	123.2	384,522	7.99	18.3	758	2.84	0	-	-
CH_2BrCH_2Br	IV	404.51	650.15	282.94	135.2	393,794	9.42	20.9	705	2.62	0	-	-
CH ₂ ICH ₂ I	IV	473.16		356.16	155.6	436,934	11.88	29.1	644	2.33	0	-	-
Cyclopropane	IV	240.00	398.00	146.00	93.0	59,448	5.88	17.4	251	2.26	0	-	-
$\rm CH_3 \rm CH_2 \rm SH$	IV	308.15	499.15	125.26	109.5	289,644	7.35	21.8	953	3.61	0	-	-
CH ₃ CH ₂ OH	IV	351.44	513.92	159.05	93.4	316,314	5.71	17.3	2,297	6.65	0	-	-
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{NH}_2$	IV	289.73	456.15	192.15	98.9	187,254	6.29	18.9	1,214	5.18	0	-	-
$\rm CH_2SHCH_2SH$	IV	419.20		231.95	135.4	580,583	9.43	24.2	1,057	4.08	0	-	-
CH ₂ OHCH ₂ OH	IV	470.45	720.00	260.15	103.4	756,363	6.17	15.3	2,825	7.96	0	-	-
CH ₃ CH ₂ CH ₃	IV	231.11	369.83	85.47	104.8	12,631	6.67	22.8	54	0.76	0	-	-
CH ₃ CHFCH ₃	IV	263.81		139.80	108.9	374,044	6.50	20.0	1,341	3.94	0	-	-
CH ₃ CH ₂ CH ₂ F	IV	269.95		114.16	109.7	405,073	6.51	20.2	1,390	3.60	0	-	-
CH ₃ CHClCH ₃	IV	308.85		155.97	122.2	424,692	7.89	21.6	857	3.39	0	-	-
CH ₃ CH ₂ CH ₂ Cl	IV	319.67	503.15	150.35	124.6	454,316	8.02	22.3	887	3.20	0	-	-
CH ₃ CHBrCH ₃	IV	333.00	532.00	184.20	127.8	457,232	8.55	22.7	824	3.31	0	-	-
CH ₃ CH ₂ CH ₂ Br	IV	344.15	536.94	163.15	130.6	476,137	8.72	23.6	841	3.25	0	-	-
CH ₃ CHICH ₃	IV	362.40		183.15	137.4	481,442	9.67	26.2	752	3.22	0	-	-
CH ₃ CH ₂ CH ₂ I	IV	375.60		171.85	140.8	492,594	9.90	27.7	757	3.10	0	-	-
CH ₃ CHSHCH ₃	IV	328.00	517.30	142.61	127.5	311,935	8.52	23.8	879	3.65	0	-	-
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{SH}$	IV	339.80	533.00	167.23	130.6	344,246	8.72	25.2	919	3.48	0	-	-
CH ₃ CHOHCH ₃	IV	355.50	509.00	185.75	113.1	338,159	7.02	20.4	2,122	6.26	0	-	-
CH ₃ CH ₂ CH ₂ OH	IV	370.35	536.78	146.95	114.6	365,465	7.09	20.8	2,180	6.25	0	-	-
$CH_2NH_2CH_2NH_2$	IV	390.41	613.10	284.29	114.1	522,945	7.31	18.5	1,714	5.82	0	-	-
CH ₃ CHNH ₂ CH ₃	IV	304.92	471.90	177.95	117.8	226,757	7.54	21.5	1,187	4.98	0	-	-
CH ₃ CH ₂ CH ₂ NH ₂	IV	321.00	496.95	190.15	120.0	255,086	7.64	22.5	1,380	4.75	0	-	-

* The available experimental normal boiling points (NBPs), critical temperatures (CTs) and normal freezing points (NFPs), in Kelvins, of the studied fluids were laboriously and scrupulously compiled, filtered and mainly doubled-checked, from different reputable sources and peer-reviewed literature.¹⁻¹⁸ Some fluids properties were extracted from or double checked in dedicated works.¹⁹⁻³⁴ Safety datasheets of some laboratories and reputable institutions were also made use of to augment our datasets accuracy as much as possible.³⁵⁻⁴⁰

Table S2:

The dependence table of normal boiling points (NBPs) of 42 mono-, di- and triatomic compounds. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R^2 and SE) in addition to the coefficients and p-values of the independent variables.

Group I	(42 NB	SP's)		A	Γ_s	P_{av}	L_{av}	Γ_m	$\sigma_{r,ep}$	S	g	Intercept
Variable	R	Adj.	SF	coeff	coeff							
\$	K	R ²	512	p-val	p-val							
4	0.764	0 572	67.22	3.84								47 40
A	0.704	0.375	07.52	4.08 × 10 ⁻⁹								-47.42
	0.820	0 (72	50.04	3.48	2.27 × 10 ⁻⁴							50.40
$A + I_s$	0.830	0.073	38.84	3.59 × 10 ⁻⁹	7.57 × 10 ⁻⁴							-52.42
$A + \Gamma_s +$	0.951	0.702	56.20	0.04	2.80 × 10 ⁻⁴	38.99						(28
Pav	0.831	0.702	30.20	9.81 × 10 ⁻¹	9.28 × 10 ⁻⁵	3.55 × 10 ⁻²						0.28
$A + \Gamma_s +$	0.976	0.742	50.24	-2.76	2.90 × 10 ⁻⁴	76.45	-5.38					07.06
$P_{av} + L_{av}$	$\begin{array}{l} A+\Gamma_s+\\ P_{av}+L_{av} \end{array} 0.876 \end{array}$	0.742	32.34	1.47 × 10 ⁻¹	2.31 × 10 ⁻⁵	1.32 × 10 ⁻³	1.31 × 10 ⁻²					87.80
$A + \Gamma_s +$	0.054	0.907	22.00	1.98	-1.60 × 10 ⁻⁴	27.85	-1.25	6.31 × 10 ⁻²				74.10
$P_{av} + L_{av}$ + Γ_m	0.934	0.897	55.09	1.48 × 10 ⁻¹	2.99 × 10 ⁻²	7.76 × 10 ⁻²	3.84 × 10 ⁻¹	6.85 × 10 ⁻⁹				-/4.10
$A + \Gamma_s + P_{av} + L_{av}$	0.054	0.804	22.52	1.85	-1.63 × 10 ⁻⁴	29.12	-1.33	6.05 × 10 ⁻²	1.77			70.16
$+\Gamma_m + \sigma_{r,ep}$	0.934	0.894	55.52	2.04 × 10 ⁻¹	3.10 × 10 ⁻²	8.08 × 10 ⁻²	3.71 × 10 ⁻¹	3.19 × 10 ⁻⁵	7.84 × 10 ⁻¹			-/2.10
$A + \Gamma_s + P_{av} + L_{av}$	0.064	0.014	20.16	1.43	-1.78 × 10 ⁻⁴	34.56	86	6.03 × 10 ⁻²	4.12	51.83		
$+\Gamma_m + \sigma_{r,ep} + S$	0.904	0.914	30.10	2.76 × 10 ⁻¹	1.02 × 10 ⁻²	2.45 × 10 ⁻²	5.19 × 10 ⁻¹	7.18 × 10 ⁻⁶	4.83 × 10 ⁻¹	4.52 × 10 ⁻³		-81.00
$\frac{A + \Gamma_s + \Gamma_s}{P_{av} + L_{av}}$	0.967	0.010	20.20	0.59	-1.53 × 10 ⁻⁴	43.42	-1.25	6.41 × 10 ⁻²	-1.54	43.05	18.82	70.20
$\sigma_{r,ep} + S$ +g	0.907	0.919	27.29	6.63 × 10 ⁻¹	2.45 × 10 ⁻²	7.13 × 10 ⁻³	3.44 × 10 ⁻¹	2.47 × 10 ⁻⁶	8.14 × 10 ⁻¹	1.80 × 10 ⁻²	9.00 × 10 ⁻²	-/0.39

The dependence table of normal boiling points (NBPs) of 28 tetratomic compounds. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R^2 and SE) in addition to the coefficients and p-values of the independent variables.

Group I	I (28 N	BP's)		A	Γ_s	P_{av}	Lav	Γ_m	$\sigma_{r,ep}$	g'	Intercept
Variable S	R	Adj. R ²	SE	coeff	coeff	coeff	coeff	coeff	coeff	coeff	
3		R		p-val	p-val	p-val	p-val	p-val	p-val	p-val	
	0.000	0 (21	57 00	2.52							51.06
A	0.803	0.631	57.09	2.72 × 10 ⁻⁷							51.96
() T	0.007	0.000	41.15	2.69	2.00 × 10 ⁻⁴						15 (1
$A + I_s$	0.907	0.808	41.13	2.59 × 10 ⁻¹⁰	3.70 × 10 ⁻⁵						-15.61
$A + \Gamma_s +$	0.021	0.850	26.40	18	2.40 × 10 ⁻⁴	31.67					60.74
P_{av} 0.931 0.8	0.830	30.40	8.67 × 10 ⁻¹	1.64 × 10 ⁻⁶	9.43 × 10 ⁻³					60.74	
$A + \Gamma_{\rm s} + \dots$	0.052	0.802	20.70	-3.66	2.55 × 10 ⁻⁴	84.58	-8.19				172.26
$P_{av} + L_{av}$	0.933	0.893	30.79	1.49 × 10 ⁻²	6.19 × 10 ⁻⁸	1.69 × 10 ⁻⁴	3.57 × 10 ⁻³				172.30
$A + \Gamma_s +$	0.052	0.000	21.42	-3.36	2.29 × 10 ⁻⁴	81.29	-7.65	5.62 × 10 ⁻³			154.46
$P_{av} + L_{av}$ + Γm	0.955	0.888	51.45	7.02 × 10 ⁻²	2.44 × 10 ⁻²	1.46 × 10 ⁻³	2.51 × 10 ⁻²	7.75 × 10 ⁻¹			134.40
$\frac{A + \Gamma_s}{P_{av} + L_{av}}$	0.054	0.004	22.02	-2.98	2.12 × 10 ⁻⁴	77.20	-7.10	6.17 × 10 ⁻³	2.79		120.06
$+\Gamma_m + \sigma_{r,ep}$	0.954	0.884	32.03	1.52 × 10 ⁻¹	5.80 × 10 ⁻²	5.26 × 10 ⁻³	5.48 × 10 ⁻²	7.59 × 10 ⁻¹	6.80 × 10 ⁻¹		129.96
$\frac{A + \Gamma_s}{P_{av} + L_{av}}$	$+\Gamma_{s} + \frac{1}{2}$	22.40	-3.24	2.13 × 10 ⁻⁴	81.68	-8.09	3.42 × 10 ⁻³	4.55	9.65	100.79	
$+I_m + \sigma_{r,ep} + g'$	0.933	0.881	32.40	1.32 × 10 ⁻¹	6.00 × 10 ⁻²	4.90 × 10 ⁻³	4.52 × 10 ⁻²	8.69 × 10 ⁻¹	5.33 × 10 ⁻¹	4.77 × 10 ⁻¹	122.78

The dependence table of normal boiling points (NBPs) of 67 compounds (pentatomic compounds and some methane derivatives). The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R^2 and SE) in addition to the coefficients and p-values of the independent variables.

Group I	II (67 N	NBP's)		A	Γ_s	P_{av}	L_{av}	Γ_m	$\sigma_{r,ep}$	Intercept
Variable	R	Adj.	SF	coeff	coeff	coeff	coeff	coeff	coeff	_
S	K	R ²	512	p-val	p-val	p-val	p-val	p-val	p-val	
A	0.826	0.677	49.14	2.50						- 17.29
				10-18						
$A + \Gamma_s$	0.903	0.809	37.81	2.76	2.98 × 10 ⁻⁴					71.17
3				1.01×10^{-24}	4.79 × 10 ⁻⁹					
$\begin{array}{c} A+\Gamma_{s}+\\ P_{av} \end{array}$	0.044	0.000	20.22	30	2.44 × 10 ⁻⁴	36.28				17.07
	0.944	0.886	29.22	5.37 × 10 ⁻¹	2.12 × 10 ⁻⁹	8.17 × 10 ⁻⁹				- 17.87
$A + \Gamma_s +$	0.070	0.036	21.05	-3.71	1.74 × 10 ⁻⁴	81.55	-5.66			- 178 67
$P_{av} + L_{av}$	0.970	0.930	21.95	6.03 × 10 ⁻⁸	5.09 × 10 ⁻⁸	1.01 × 10 ⁻¹⁵	1.77 × 10 ⁻⁹			178.07
$A + \Gamma_s + P + I$	0.074	0.944	20.37	-4.49	4.36 × 10 ⁻⁵	94.28	-6.31	3.20 × 10 ⁻²		- 191 93
$\Gamma_{av} + L_{av}$ + Γ_m	0.9/4	0.944	20.37	4.77 × 10 ⁻¹⁰	3.61 × 10 ⁻¹	2.99 × 10 ⁻¹⁷	2.11 × 10 ⁻¹¹	1.51 × 10 ⁻³		101.05
$A + \Gamma_s + P_{av} + L_{av}$	$+\Gamma_s + L_{av} = 0.077 = 0.051$	0.051	10.22	-4.27	1.41 × 10 ⁻⁵	91.95	-6.05	1.75 × 10 ⁻²	9.55	162 79
$+\Gamma_m + \sigma_{r,ep}$	0.977	0.931	19.22	4.42 × 10 ⁻¹⁰	7.58 × 10 ⁻¹	1.18 × 10 ⁻¹⁷	1.74 × 10 ⁻¹¹	9.77 × 10 ⁻²	4.88 × 10 ⁻³	- 102.78

The dependence table of normal boiling points (NBPs) of 31 ethane and propane derivatives. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R² and SE) in addition to the coefficients and p-values of the independent variables.

Group I	V (31	NBP's)		A	Γ_s	Pav	L_{av}	Γ_m	$\sigma_{r,ep}$	Intercept
Variable	D	Adj.	SF	coeff	coeff	coeff	coeff	coeff	coeff	_
S	K	R ²	SE	p-val	p-val	p-val	p-val	p-val	p-val	_
	0.675	0.407	10.04	2.61						05 70
A	0.675	0.437	49.04	3.08 × 10 ⁻⁵						- 25.73
<u> </u>	0.022	0.671	27.51	1.67	2.28 × 10 ⁻⁴					52.01
$A + I_s$	0.832	0.071	57.51	9.98 × 10 ⁻⁴	7.34 × 10 ⁻⁵					52.01
$\begin{array}{c} A+\Gamma_s+\\ P_{av} \end{array} = 0$	0.852	0.606	26.05	-1.96	2.63 × 10 ⁻⁴	38.51				169 14
	0.832	0.090	30.05	3.45 × 10 ⁻¹	1.98 × 10 ⁻⁵	7.98 × 10 ⁻²				- 100.14
$A + \Gamma_s +$	0.870		22.52	-1.58	1.93 × 10 ⁻⁴	56.85	-10.26			227 57
$P_{av} + L_{av}$	0.879	0.737	55.52	4.15 × 10 ⁻¹	2.09 × 10 ⁻³	1.27 × 10 ⁻²	3.04 × 10 ⁻²			- 221.31
$A + \Gamma_s + P + I$	0.060	0.026	17 70	-3.26	3.31 × 10 ⁻⁵	89.48	-10.90	6.29 × 10 ⁻²		178 65
$P_{av} + L_{av} = 0.9$ $+ \Gamma_m$	0.909	0.920	17.79	4.06 × 10 ⁻³	3.63 × 10 ⁻¹	7.72 × 10 ⁻⁸	1.10 × 10 ⁻⁴	1.49 × 10 ⁻⁸		- 178.05
$A + \Gamma_s + P_{av} + L_{av}$	$A + \Gamma_s + P_{av} + L_{av} = 0.969 0.9$ + $\Gamma_m + \sigma_{r,ep}$	0.022	19 16	-3.27	3.24 × 10 ⁻⁵	89.76	-10.94	6.49 × 10 ⁻²	73	170.52
$+\Gamma_m + \sigma_{r,ep}$		0.925	10.10	5.00 × 10 ⁻³	3.97 × 10 ⁻¹	2.22 × 10 ⁻⁷	1.69 × 10 ⁻⁴	8.68 × 10 ⁻³	9.29 × 10 ⁻¹	- 1/9.32

The dependence table of critical temperatures (CTs) of 31 mono-, di- and triatomic compounds. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R² and SE) in addition to the coefficients and p-values of the independent variables.

Group I	(31 CT	.''s)		A	Γ_{s}	P_{av}	L_{av}	Γ_m	$\sigma_{r,ep}$	S	g	Intercept
Variable	R	Adj.	SE	coeff	coeff	_						
\$	ĸ	R ²	SL	p-val	p-val							
	0 (74	0.426	104 (2	5.98								55.00
A	0.074	0.430	124.03	3.18 × 10 ⁻⁵								33.22
	0.790	0.50(105 52	5.03	5.16 × 10 ⁻⁴							53.53
$A + I_s$	0.789	0.596	105.52	5.78 × 10 ⁻⁵	1.46 × 10 ⁻³							52.52
$A + \Gamma_s +$	0.015	0 (27	101.20	98	6.05 × 10 ⁻⁴	71.97						22.22
Pav	0.813	0.027	101.29	7.77 × 10 ⁻¹	3.64 × 10 ⁻⁴	7.68 × 10 ⁻²						- 33.22
$\begin{array}{c} A + \Gamma_s + \\ P_{m} + L_{m} \end{array} 0.858 \end{array}$	0.605	01 70	-6.52	6.20 × 10 ⁻⁴	143.73	-9.71					102 70	
$P_{av} + L_{av}$	$\begin{array}{l} A+I_{s}^{*}+\\ P_{av}+L_{av} \end{array} 0.858 \end{array}$	0.095	91.70	9.35 × 10-2	9.52 × 10 ⁻⁵	3.45 × 10 ⁻³	1.40 × 10 ⁻²					- 192.70
$A + \Gamma_s + P + I$	0.027	0.852	62 74	1.97	-1.67 × 10 ⁻⁴	59.54	-3.06	9.44 × 10 ⁻²				20.86
$T_{av} + L_{av}$ + Γm	0.937	0.852	03.74	5.24 × 10 ⁻¹	3.47 × 10 ⁻¹	9.94 × 10 ⁻²	2.92 × 10 ⁻¹	1.44 × 10 ⁻⁵				80.80
$A + \Gamma_s + P_{av} + L_{av}$	0.028	0.840	64 53	1.43	-1.78 × 10 ⁻⁴	64.18	-3.43	8.24 × 10 ⁻²	8.18			70.71
$+\Gamma_m + \sigma_{r,ep}$	0.938	0.049	04.55	6.59 × 10 ⁻¹	3.24 × 10 ⁻¹	8.72 × 10 ⁻²	2.55 × 10 ⁻¹	4.37 × 10 ⁻³	5.37 × 10 ⁻¹			/0./1
$A + \Gamma_s + P_{av} + L_{av}$	0.044	0.950	(2.28	0.38	-1.95 × 10 ⁻⁴	77.49	-3.02	8.23 × 10 ⁻²	10.62	61.30		72.01
$+\Gamma_m + \sigma_{r,ep} + S$	0.944	0.839	02.28	9.06 × 10 ⁻¹	2.67 × 10 ⁻¹	4.02 × 10 ⁻²	3.00 × 10 ⁻¹	3.46 × 10 ⁻³	4.11 × 10 ⁻¹	1.10 × 10 ⁻¹		-/3.21
$A + \Gamma_s + P_{av} + L_{av}$	$\frac{A + \Gamma_s}{A + L_{av}}$			-1.13	-2.12 × 10 ⁻⁴	92.58	-3.87	1.01×10^{-1}	-8.51	33.12	57.64	_
$ \begin{array}{rcl} \Gamma_{av} + \Sigma_{av} \\ + \Gamma_m + & 0.954 \\ \sigma_{r,ep} + S \\ + g \end{array} $	0.878	57.92	7.11 × 10 ⁻¹	1.96 × 10 ⁻¹	1.22 × 10 ⁻²	1.62 × 10 ⁻¹	5.64 × 10 ⁻⁴	5.71 × 10 ⁻¹	3.77 × 10 ⁻¹	4.34 × 10 ⁻²	-55.64	

The dependence table of critical temperatures (CTs) of 19 tetratomic compounds. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R^2 and SE) in addition to the coefficients and p-values of the independent variables.

Group I	[(19 C'	Γ's)		A	Γ_s	P_{av}	Lav	Γ_m	$\sigma_{r,ep}$	g'	Intercept
Variable s	R	Adj. R²	SE	coeff	coeff	coeff	coeff	coeff	coeff	coeff	
				p-vai	p-vai	p-val	p-vai	p-vai	p-vai	p-vai	
4	0 764	0 559	87 67	3.56							102 13
7 1	0.704	0.557	07.07	1.40 × 10 ⁻⁴							102.15
	0.073	0.710	71.10	3.78	4.32 × 10 ⁻⁴						2 (0
$A + I_s$	0.862	0.710	/1.12	9.70 × 10 ⁻⁶	6.38 × 10 ⁻³						2.60
$A + \Gamma_{\rm s} +$	0.022	0.045	51.00	-2.33	5.33 × 10 ⁻⁴	72.86					100.10
$\begin{array}{c} \mathbf{A} + \mathbf{I}_{s} + \\ \mathbf{P}_{av} \end{array} 0.933 0 \end{array}$	0.845	51.93	1.75 × 10 ⁻¹	1.23 × 10 ⁻⁴	1.50 × 10 ⁻³					133.19	
$A + \Gamma_s + \dots$	0.000	0.000	41.97	-7.82	5.00 × 10 ⁻⁴	156.45	-12.05				200.88
$P_{av} + L_{av}$	0.960	0.900	41.87	3.70 × 10 ⁻³	3.80 × 10 ⁻⁵	2.14 × 10 ⁻⁴	9.32 × 10 ⁻³				309.88
$A + \Gamma_s +$	0.0(1	0.005	40.00	-6.96	4.16 × 10 ⁻⁴	147.46	-10.46	1.82 × 10 ⁻²			
$P_{av} + L_{av}$ + Γ_m	0.961	0.895	42.82	2.24 × 10 ⁻²	2.26 × 10 ⁻²	1.12 × 10 ⁻³	4.93 × 10 ⁻²	5.46 × 10 ⁻¹			255.63
$A + \Gamma_s + P_{ss} + L_{ss}$				-8.07	4.88 × 10 ⁻⁴	159.54	-12.02	1.42 × 10 ⁻²	-7.92		
$+\Gamma_m + \sigma_{r,ep}$	0.963	0.891	43.62	2.43 × 10 ⁻²	2.57 × 10 ⁻²	1.72 × 10 ⁻³	4.47 × 10 ⁻²	6.48 × 10 ⁻¹	4.81 × 10 ⁻¹		325.78
$\frac{A + \Gamma_s}{P_{av} + L_{av}}$		1 0.000		-9.17	5.48 × 10 ⁻⁴	177.34	-16.37	-7.27 × 10 ⁻⁴	-3.94	36.15	
$+\Gamma_m + \sigma_{r,ep} + \sigma'$	0.971	0.908	40.13	9.92 × 10 ⁻³	1.11 × 10 ⁻²	6.73 × 10 ⁻⁴	1.27 × 10 ⁻²	9.81 × 10 ⁻¹	7.08 × 10 ⁻¹	1.02 × 10 ⁻¹	319.52

The dependence table of critical temperatures (CTs) of 42 compounds (pentatomic compounds and some methane derivatives). The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R^2 and SE) in addition to the coefficients and p-values of the independent variables.

Group I	II (42 C	CT's)		A	Γ_s	P_{av}	L_{av}	Γ_m	$\sigma_{r,ep}$	Intercept
Variable	R	Adj.	SF	coeff	coeff	coeff	coeff	coeff	coeff	
S	К	R ²	51	p-val	p-val	p-val	p-val	p-val	p-val	
				3.13						
A	0.772	0.587	83.46	2.07 × 10 ⁻⁹						103.79
$A \pm \Gamma$	0.805	0 701	50.36	3.72	5.81 × 10 ⁻⁴					58 57
$A + I_s$	0.895		39.30	6.32 × 10 ⁻¹⁵	1.80 × 10 ⁻⁷					-38.32
$A + \Gamma_s +$	0.052	0.000	41.12	-1.59	4.91 × 10 ⁻⁴	65.75				82 47
Pav	0.932	0.900	41.12	6.44 × 10 ⁻²	4.58 × 10 ⁻⁹	9.18 × 10 ⁻⁸				82.47
$A + \Gamma_s +$	0.062	0.019	27.26	-5.59	3.75 × 10 ⁻⁴	121.08	-7.19			262.07
$P_{av} + L_{av}$	0.962	0.918	57.20	7.21 × 10 ⁻⁴	4.93 × 10 ⁻⁶	6.99 × 10 ⁻⁷	4.26 × 10 ⁻³			203.97
$A + \Gamma_s + P$	0.067	0.026	25.40	-6.05	1.99 × 10 ⁻⁴	129.81	-7.29	4.32 × 10 ⁻²		240 (7
$P_{av} + L_{av}$ + Γm	0.907	0.920	55.40	1.90 × 10 ⁻⁴	6.08 × 10 ⁻²	1.11 × 10 ⁻⁷	2.50 × 10 ⁻³	3.18 × 10 ⁻²		249.07
$\frac{A+\Gamma_s}{P_{av}+L_{av}}$	- v 0.973 0.939	22.16	-5.79	1.43 × 10 ⁻⁴	126.89	-6.71	3.20 × 10 ⁻³	21.08	221.12	
$+\Gamma_m + \sigma_{r,ep}$	0.9/3	0.939	32.10	1.05 × 10 ⁻⁴	1.44 × 10 ⁻¹	2.94 × 10 ⁻⁸	2.36 × 10 ⁻³	8.86 × 10 ⁻¹	5.82 × 10 ⁻³	221.13

The dependence table of critical temperatures (CTs) of 23 ethane and propane derivatives. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R² and SE) in addition to the coefficients and p-values of the independent variables.

Group I	V (23 C	CT's)		A	Γ_s	P_{av}	L_{av}	Γ_m	$\sigma_{r,ep}$	Intercept
Variable	D	Adj.	SF	coeff	coeff	coeff	coeff	coeff	coeff	
S	K	R ²	SE	p-val	p-val	p-val	p-val	p-val	p-val	
4	0.597	0 212	75 10	3.67						02.81
A	0.387	0.315	73.19	3.24 × 10 ⁻³						92.01
	0.000	0.545	42.02	1.68	4.03 × 10 ⁻⁴					102.22
$A + I_s$	0.888	8 0.767	43.83	2.88 × 10 ⁻²	2.65 × 10 ⁻⁶					182.32
$A + \Gamma_s +$	0.000	0.750	44.51	30	4.16 × 10 ⁻⁴	23.97				225.55
Pav	0.890	0.759	44.51	9.28 × 10 ⁻¹	5.42 × 10 ⁻⁶	5.36 × 10 ⁻¹				225.55
$A + \Gamma_s +$	0.010	0.000	20.70	0.11	3.10 × 10 ⁻⁴	49.20	-14.80			226.27
$P_{av} + L_{av}$	0.918	0.808	39.79	9.71 × 10 ⁻¹	5.67 × 10 ⁻⁴	1.83 × 10 ⁻¹	2.72 × 10 ⁻²			336.3/
$A + \Gamma_s +$	0.050	0.002	20 (0	-4.65	1.26 × 10 ⁻⁴	126.39	-16.67	6.32 × 10 ⁻²		226.40
$P_{av} + L_{av}$ + Γm	0.958	0.893	29.68	7.67 × 10 ⁻²	1.00 × 10 ⁻¹	1.35 × 10 ⁻³	2.16 × 10 ⁻³	1.11 × 10 ⁻³		336.49
$A + \Gamma_s + P_{av} + L_{av} = 0.050$	0.000	20.50	-4.61	1.28 × 10-4	125.55	-16.61	5.94 × 10 ⁻²	1.39	224.00	
$+\Gamma_m + \sigma_{r,ep}$	$\Gamma_{av} + L_{av} = 0.958$ $+ \Gamma_m + \sigma_{r,ep}$	0.886	30.59	9.35 × 10 ⁻²	1.21 × 10 ⁻¹	2.73 × 10 ⁻³	3.35 × 10 ⁻³	2.42 × 10 ⁻¹	9.34 × 10 ⁻¹	334.99

The dependence table of normal freezing points (NFPs) of 39 mono-, di- and triatomic compounds. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R² and SE) in addition to the coefficients and p-values of the independent variables.

Group I	(39 NF	'P's)		A	Γ_s	P_{av}	L_{av}	$\Gamma_{\rm m}$	$\sigma_{r,ep}$	S	g	Intercept											
Variable	ariable R	Adj.	SE	coeff	coeff	coeff	coeff	coeff	coeff	coeff	coeff	-											
\$		R ²	51	p-val	p-val	p-val	p-val	p-val	p-val	p-val	p-val												
A	0.603	0.247	(5.51	2.46								2.80											
		0.347	65.51	4.83 × 10 ⁻⁵																			
$A + \Gamma_s$	0.700	0.600	51.24	2.04	2.78 × 10 ⁻⁴							8.92											
	0.788		51.24	2.94 × 10 ⁻⁵	1.77 × 10 ⁻⁵																		
$\begin{array}{c} A+\Gamma_{s}+\\ P_{av} \end{array}$	0.847	0.603	11 03	-2.50	3.38 × 10 ⁻⁴	51.04						70.74											
	0.047	0.093	44.95	7.70 × 10 ⁻²	1.87 × 10 ⁻⁷	1.52 × 10 ⁻³						- /0./4											
$A + \Gamma_s + P_{av} + L_{av}$	0.872	0 733	<i>A</i> 1 90	-4.54	3.46 × 10-4	80.90	-4.65					- 125.30											
	0.072	0.755	41.90	5.11 × 10 ⁻³	3.52 × 10 ⁻⁸	9.45 × 10 ⁻⁵	1.75 × 10 ⁻²																
$A + \Gamma_s + P$	0.806	0 772	38.61	-2.60	1.60 × 10 ⁻⁴	61.37	-3.10	2.61 × 10 ⁻²				<u>58 22</u>											
$F_{av} + L_{av}$ + Γm	0.890	0.775		1.10 × 10-1	6.26 × 10 ⁻²	2.10 × 10 ⁻³	9.65 × 10 ⁻²	1.21 × 10 ⁻²				36.22											
$A + \Gamma_s + P_{av} + L_{av}$	0.902 (0.779	0.779	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	0.770	38.10	-3.32	1.45 × 10 ⁻⁴	69.16	-3.76	1.12 × 10 ⁻²	10.21			- 68.43
$+\Gamma_m + \sigma_{r,ep}$				36.10	5.20 × 10-2	9.05 × 10 ⁻²	9.57 × 10 ⁻⁴	5.07 × 10 ⁻²	4.45 × 10 ⁻¹	1.80 × 10 ⁻¹			08.45										
$A + \Gamma_s + P_{av} + L_{av}$	0.022	0.816	2172	-3.86	1.27 × 10 ⁻⁴	76.42	-3.39	1.11 × 10 ⁻²	12.68	54.49													
$+\Gamma_m + \sigma_{r,ep} + S$	0.922		0.810	0.010	0.810	34./3	1.59 × 10-2	1.03 × 10 ⁻¹	1.33 × 10 ⁻⁴	5.42 × 10 ⁻²	4.08 × 10 ⁻¹	7.32 × 10 ⁻²	1.01 × 10 ⁻²		39.08								
$A + \Gamma_s + P_{av} + L_{av}$				-4.20	1.37 × 10-4	80.21	-3.60	1.23 × 10-2	10.73	51.44	7.01												
$+\Gamma_m + \sigma_{r,ep} + S + g$	0.923	0.923	0.812	0.812	0.812	0.812	35.14	$\begin{array}{ccc} 1.71 \times & 9.32 \times \\ 10^{-2} & 10^{-2} \end{array}$	2.28 × 10 ⁻⁴	4.97 × 10 ⁻²	3.72 × 10 ⁻¹	1.82 × 10 ⁻¹	2.00 × 10 ⁻²	6.05 × 10 ⁻¹	63.20								

The dependence table of normal freezing points (NFPs) of 28 tetratomic compounds. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R^2 and SE) in addition to the coefficients and p-values of the independent variables.

Group II (28 NFP's)			A	Γ_s	P_{av}	L_{av}	$\Gamma_{\rm m}$	$\sigma_{r,ep}$	g'	Intercept	
variable s	R	Adj. R ²	SE	p-val	p-val	p-val	p-val	p-val	p-val	p-val	
A	0.571	0.300	55.38	1.26 1.51 × 10 ⁻³							73.88
$A + \Gamma_s$	0.783	0.583	42.75	1.42 2.71 × 10 ⁻⁵	1.80 × 10 ⁻⁴ 2.19 × 10 ⁻⁴						13.31
$\begin{array}{c} A+\Gamma_{s}+\\ P_{av} \end{array}$	0.822	0.636	39.95	98 4.00 × 10 ⁻¹	2.13 × 10 ⁻⁴ 3.34 × 10 ⁻⁵	26.49 4.18 × 10 ⁻²					77.19
$A + \Gamma_s + P_{av} + L_{av}$	0.844	0.663	38.44	-3.28 7.18 × 10 ⁻²	2.23 × 10-4 1.44 × 10 ⁻⁵	61.31 1.59 × 10 ⁻²	-5.39 1.01 × 10 ⁻¹				150.64
$A + \Gamma_s + P_{av} + L_{av} + \Gamma m$	0.850	0.659	38.66	-2.17 3.29 × 10 ⁻¹	1.29 × 10 ⁻⁴ 2.82 × 10 ⁻¹	49.29 8.68 × 10 ⁻²	-3.41 3.93 × 10 ⁻¹	2.05 × 10 ⁻² 3.99 × 10 ⁻¹			85.24
$A + \Gamma_s + P_{av} + L_{av} + \Gamma_m + \sigma_{r,ep}$	0.851	0.645	39.45	-2.55 3.14 × 10 ⁻¹	1.47 × 10-4 2.71 × 10 ⁻¹	53.48 9.45 × 10 ⁻²	-3.97 3.67 × 10 ⁻¹	2.00 × 10-2 4.23 × 10 ⁻¹	-2.86 7.31 × 10 ⁻¹		110.29
$A + \Gamma_s + P_{av} + L_{av} + \Gamma_m + \sigma_{r,ep} + C_m$	0.861	0.651	39.10	-2.05	1.44 × 10 ⁻⁴ 2.76 ×	44.71	-2.03	2.54 × 10 ⁻² 3.16 ×	-6.31 4.75 ×	-18.90 2.54 ×	124.36
g'				10-1	10-1	10-1	10-1	10-1	10-1	10-1	

The dependence table of normal freezing points (NFPs) of 58 compounds (tetratomic compounds and some methane derivatives). The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R^2 and SE) in addition to the coefficients and p-values of the independent variables.

Group I	II (58 N	NFP's)		A	Γ_s	Pav	L_{av}	Γ_m	$\sigma_{r,ep}$	Intercept	
Variable	R	Adj.	SF	coeff	coeff	coeff	coeff	coeff	coeff		
S	К	R ²	51	p-val	p-val	p-val	p-val	p-val	p-val		
A	0.786	0.64.0	38.48	1.61							
		0.610		2.84 × 10 ⁻¹³						- 1.24	
$A + \Gamma_s$	0.857	0.725	32.35	1.76	2.02 × 10 ⁻⁴					54.46	
				4.01 × 10 ⁻¹⁷	8.13 × 10 ⁻⁶					-34.40	
$A + \Gamma_s +$	0.885	0.770	20.55	0.03	1.74 × 10 ⁻⁴	20.53				5 50	
Pav	0.885	0.770	29.33	9.49 × 10 ⁻¹	3.24 × 10 ⁻⁵	1.08 × 10 ⁻³				-5.50	
$A + \Gamma_s +$	0.008	0.810	26.94	-2.23	1.26 × 10 ⁻⁴	50.71	-3.74			08.45	
$P_{av} + L_{av}$	0.908	0.010	20.84	7.08 × 10 ⁻³	1.33 × 10 ⁻³	6.39 × 10 ⁻⁶	8.80 × 10 ⁻⁴			90.43	
$A + \Gamma_s + P + I$	0.020	0.822	25.24	-2.87	-2.32 × 10 ⁻⁵	61.93	-4.17	3.78 × 10 ⁻²		02.80	
$P_{av} + L_{av}$ + Γ_m	0.920	0.832	23.24	5.62 × 10 ⁻⁴	7.16 × 10 ⁻¹	1.90 × 10 ⁻⁷	1.31 × 10 ⁻⁴	6.83 × 10 ⁻³		92.80	
$\frac{A+\Gamma_s}{P_{av}+L_{av}}$	0.925	0.820	24.74	-3.17	-1.15 × 10 ⁻⁶	65.45	-4.60	5.64 × 10 ⁻²	-9.91	112 10	
$+\Gamma_m + \sigma_{r,ep}$		0.923	0.923	0.039	24.74	1.80 × 10 ⁻⁴	9.86 × 10 ⁻¹	5.78 × 10 ⁻⁸	3.72 × 10 ⁻⁵	1.54× 10 ⁻³	8.35 × 10 ⁻²

The dependence table of normal freezing points (NFPs) of 30 ethane and propane derivatives. The table shows the effect of successive addition of molecular descriptors as independent variables on the correlation parameters (R, adjusted R² and SE) in addition to the coefficients and p-values of the independent variables.

Group IV (30 NFP's)				A	Γ_s	P_{av}	L_{av}	Γ_m	$\sigma_{r,ep}$	Intercept									
Variable	D	Adj.	SF	coeff	coeff	coeff	coeff	coeff	coeff										
S	K	R ²	SL	p-val	p-val	p-val	p-val	p-val	p-val										
A	0.559	0.288	50.13	1.99						55.08									
		0.288	30.13	1.33 × 10 ⁻³															
$A + \Gamma_s$	0.634	0.358	47.59	1.37	1.31 × 10 ⁻⁴					29.78									
				3.45 × 10 ⁻²	5.37 × 10 ⁻²														
$A + \Gamma_s +$	0.(79	0.200	46.00	-2.90	1.67 × 10 ⁻⁴	45.98				102 (1									
P_{av}	0.678	0.398	46.09	2.80 × 10 ⁻¹	1.85 × 10 ⁻²	1.07 × 10 ⁻¹				- 102.61									
$A + \Gamma_s +$	0.864	0 705	22.24	-1.85	1.72 × 10 ⁻⁵	84.15	-23.15			228 50									
$P_{av} + L_{av}$	0.804	0.703	32.24	3.26 × 10 ⁻¹	7.56 × 10 ⁻¹	3.96 × 10 ⁻⁴	1.70 × 10 ⁻⁵			- 238.30									
$A + \Gamma_s + P_{av} + L_{av} + \Gamma_m$	0.911	0 705	26.99	-3.25	-9.66 × 10 ⁻⁵	109.01	-22.85	4.27 × 10 ⁻²		100.02									
		0.795	20.88	5.26 × 10 ⁻²	9.81 × 10 ⁻²	4.83 × 10 ⁻⁶	1.72 × 10 ⁻⁶	2.03 × 10 ⁻³		198.85									
$\frac{A + \Gamma_s}{P_{av} + L_{av}}$	0.011	0.796	07.45	-3.27	-9.82 × 10 ⁻⁵	109.57	-22.94	4.71 × 10 ⁻²	-1.66	200.07									
$+\Gamma_m + \sigma_{r,ep}$	0.911	11 0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786	86 27.45	5.73 × 10 ⁻²	1.07 × 10 ⁻¹	9.76 × 10 ⁻⁶	3.35 × 10 ⁻⁶	1.84 × 10 ⁻¹	8.93 × 10 ⁻¹	- 200.95

Supplementary Figures

Figure S1: Experimental (X-axis) vs predicted (Y-axis) values of normal boiling points (NBPs) of Group I, II, III and IV compounds, where the full-variable relation is used, with the correlation coefficient (R) and the standard error (SE) depicted on the graphs

Figure S2: Experimental (X-axis) vs predicted (Y-axis) values of critical temperatures (CTs) of Group I, II, III and IV compounds, where the full-variable relation is used, with the correlation coefficient (R) and the standard error (SE) depicted on the graphs

Figure S3: Experimental (X-axis) vs predicted (Y-axis) values of normal freezing points (NFPs) of Group I, II, III and IV compounds, where the full-variable relation is used, with the correlation coefficient (R) and the standard error (SE) depicted on the graphs

Figure S4

Figure S4: The interaction energies of the of ClX···He and OCY···He complexes (X = Cl, Br and I and Y = O, S and Se) calculated at MP2/aug-cc-pVDZ level of theory, where the \angle ClXHe and \angle CYHe angles increase from 90° to 180° and the X/Y···He distance is the sum of the VdW radii of the X/Y and He atoms

Figure S5: The interaction energies of the of CO···He and OC···He complexes calculated at MP2/aug-cc-pVDZ level of theory, where the \angle COHe and \angle OCHe angles increase from 90° to 180° and the C/O···He distance is the sum of the VdW radii of the C/O and He atoms

<mark>Figure S6</mark>

Figure S6: PES scan of the of CO/OC···He complexes calculated at MP2/aug-cc-pVDZ level of theory, where the \angle COHe and \angle COHe = 180° and the CO/OC···He distance ranged from 2.5 to 5 Å with a step size of 0.1 Å

References

- 1. J. R. Rumble, ed., CRC handbook of chemistry and physics, CRC Press, Boca Raton, FL, 2017.
- 2. A. R. Katritzky, V. S. Lobanov and M. Karelson, J. Chem. Inf. Comput. Sci., 1998, 38, 28-41.
- 3. C. L. Yaws, in *Handbook of Chemical Compound Data for Process Safety*, ed. C. L. Yaws, Gulf Professional Publishing, Houston, 1997, DOI: https://doi.org/10.1016/B978-88415381-8/50017-6, pp. 1-26.
- 4. A. P. Kudchadker, S. A. Kudchadker, R. P. Shukla and P. R. Patnaik, J. Phys. Chem. Ref. Data, 1979, 8, 499-517.
- 5. H. W. Xiang, J. Phys. Chem. Ref. Data, 2001, 30, 1161-1197.
- 6. D. R. Stull, Ind. Eng. Chem., 1947, 39, 517-540.
- 7. D. L. Perry, Handbook of inorganic compounds, CRC press, Boca Raton, FL, 2016.
- 8. P. J. Linstrom and W. G. Mallard, J. Chem. Eng. Data, 2001, 46, 1059-1063.
- 9. S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang and S. H. Bryant, *Nucleic Acids Res.*, 2016, 44, D1202-D1213.
- 10. J.-C. Bradley, A. Lang, A. Williams and E. Curtin, Nature Precedings, 2011, DOI: 10.1038/npre.2011.6229.1.
- 11. J. Dykyj, J. Svoboda, R. C. Wilhoit, M. Frenkel and K. R. Hall, Journal, DOI: 10.1007/10680373_12.
- 12. P. Dasgupta and S. Bhattacharjee, Chem. Eng. Sci., 1993, 48, 1535-1538.
- 13. J. Šima, Foundations of Chemistry, 2016, 18, 67-79.
- 14. Carbon difluoride, in *Topics in Inorganic and General Chemistry*, eds. T. A. Ryan, C. Ryan, E. A. Seddon and K. R. Seddon, Pergamon, Oxford, 1996, vol. 24, pp. 545-664.
- 15. A. G. MacDiarmid, in *Advances in Inorganic Chemistry and Radiochemistry*, eds. H. J. Emeleus and A. G. Sharpe, Academic Press, 1961, vol. 3, pp. 207-256.
- 16. C. J. Hoffman and R. G. Neville, Chem. Rev., 1962, 62, 1-18.
- 17. C. L. Yaws and P. K. Narasimhan, in *Thermophysical Properties of Chemicals and Hydrocarbons*, ed. C. L. Yaws, William Andrew Publishing, Norwich, NY, 2009, DOI: https://doi.org/10.1016/B978-81551596-8.50006-7, pp. 1-95.
- 18. R. M. Stephenson, S. K. Malanowski and D. Ambrose, 1987.
- 19. T. Kaiho, in Iodine Chemistry and Applications, 2014, DOI: https://doi.org/10.1002/9781118909911.ch2, pp. 7-14.
- 20. T. G. Pearson and P. L. Robinson, J. Chem. Soc. (Resumed), 1932, DOI: 10.1039/JR9320000652, 652-660.
- 21. L. J. Beckham, W. A. Fessler and M. A. Kise, Chem. Rev., 1951, 48, 319-396.
- 22. G. Hetherington and P. L. Robinson, J. Chem. Soc. (Resumed), 1955, DOI: 10.1039/JR9550002230, 2230-2233.
- 23. H. S. Booth and C. F. Swinehart, J. Am. Chem. Soc., 1932, 54, 4750-4751.
- 24. W. F. Barber, C. F. Boynton and P. E. Gallagher, J. Chem. Eng. Data, 1964, 9, 137-138.
- 25. P. Cao, J.-X. Duan and Q.-Y. Chen, J. Chem. Soc., Chem. Commun., 1994, DOI: 10.1039/C39940000737, 737-738.
- 26. O. Ruff, Berichte der deutschen chemischen Gesellschaft (A and B Series), 1936, 69, 299-308.
- 27. K. L. Berry and J. M. Sturtevant, J. Am. Chem. Soc., 1942, 64, 1599-1600.
- 28. J. Hine and S. Ehrenson, The Journal of Organic Chemistry, 1956, 21, 819-820.
- 29. J. J. Kaczur and D. W. Cawlfield, in *Kirk-Othmer Encyclopedia of Chemical Technology*, 2000, DOI: https://doi.org/10.1002/0471238961.0308121511010326.a01.
- 30. A. F. O. Germann and Q. W. Taylor, J. Am. Chem. Soc., 1926, 48, 1154-1159.
- 31. R. L. Scott, Mol. Phys., 1966, 11, 399-401.
- 32. C. T. Ratcliffe, *The Preparation and Properties of Nitrosyl Halides and Perfluoroalkyl Sulfinyl Halides*, University of Idaho, 1968.
- 33. H. Gokce, 1991.
- 34. F. Kohler, H. J. R. Guedes, J. Revés and M. Nunes da Ponte, J. Mol. Liq., 1995, 67, 105-123.
- 35. Diiododifluoromethane, SDS No: 1100J20, July-2016, SynQuest Laboratories, Inc. Alachua, FL 32615 USA.
- 36. Chlorine Trifluoride, https://cameochemicals.noaa.gov/chemical/372, June 1999, CAMEO Chemicals, Database of Hazardous Materials.
- 37. Nitric Oxide, SDS No: P-4632, November-2021, Linde, Inc; Danbury, CT 06810-6268, USA.
- 38. Dichlorosilane, SDS No: P-4587, June-2022, Linde, Inc; Danbury, CT 06810-6268, USA.
- 39. Boron Trifluoride, SDS No: 001006, April-2020, Airgas USA, LLC and its affiliates, Randor PA, USA.
- 40. Arsine, SDS No: P-4565, March-2021, Linde, Inc; Danbury, CT 06810-6268, USA.