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9 Table S1. A summary of HEA electrocatalysts with favorable OER catalytic activity

Catalysts Catalytic reaction Reference

CoCrFeMnNi–P HER、OER [1]

CoFeLaNiPt HER、OER [2]

AlNiCoFeX 
(X = Mo, Nb, Cr)

ORR、OER [3]

NiCoFeMoMn HER、OER [4]

PtRuFeCoNi ORR、OER [5]

FeCoNiCuMn HER、OER [6]
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13 Figure S1. HEA Composition Schematic.
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16 Figure S2. Optimized geometries of the PtNiFeCoCu HEA structure.
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20 Figure S3. Chemical structure model of the PtNiFeCoCu HEA (111) surface.
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24 Figure S4 Free energy landscape of the four metal sites of HEA (001) at equilibrium 

25 potential (U = 1.23 V).
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28 Table S2. Charge contribution of individual metal sites during co-adsorption and the 

29 charge acquired by *O from the substrate.

P-1 Bader/e P-2 Bader/e

Ni
22 -0.18 Cu

19 -0.21

Ni
13 -0.17 Fe

4 -0.64

Fe
12 -0.52 Fe

7 -0.65

O 0.89 O 0.93
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32 Calculation of HER energetics

33 The total hydrogen evolution reaction can be written

34                             (1)
𝐻+ + 𝑒 ‒→

1
2
𝐻2

35 It takes place at an electrode supplying the electrons, and providing an 

36 intermediate state of the process:

37                            (2)𝐻+ + 𝑒 ‒ +∗ →𝐻 ∗

38                               (3)2𝐻 ∗→𝐻2

39 Where the * denotes a site on the surface (so an * by itself denotes a free site and H* 

40 denotes a hydrogen atom adsorbed on the surface).

41 The free energies for hydrogen adsorption (ΔGH*) are calculated from the Eq. 4:

42                      (4)
∆𝐺

𝐻 ∗
= ∆𝐸

𝐻 *
+ ∆𝑍𝑃𝐸 - 𝑇∆𝑆

43 Where the , , T and  represent the binding energy, zeropoint energy 
∆𝐸

𝐻 ∗ ∆𝑍𝑃𝐸 ∆𝑆

44 change, temperature and entropy change of H adsorption system, respectively. 

45 The vibration entropy is H at the adsorbed states is negligible. Thus,  can be ∆𝑆

46 obtained from the following Eq. 5:

47                        (5)
∆𝑆= 𝑆

𝐻 ∗
‒
1
2
𝑆𝐻2

≈‒
1
2
𝑆𝐻2

48 Where  is the entropy of H2 in the gas phase at the standard conditions. 
𝑆𝐻2

49 Besides, ZPE can be calculated from the Eq. 6: ∆

50                         (6)
∆𝑍𝑃𝐸= 𝑍𝑃𝐸

𝐻 *
-
1
2
𝑍𝑃𝐸𝐻2

51 Thus, the free energy of the adsorbed state can be calculated using the simplified 

52 Eq. 7[7]: 



53                           (7)
∆𝐺

𝐻 ∗
= ∆𝐸

𝐻 ∗
+ 0.24𝑒𝑉

54 As illustrated in Figure S5, we randomly selected eight potential sites on the 

55 PtNiFeCoCu HEA (111) surface and calculated their ΔGH* values. ΔGH* is a key 

56 descriptor for evaluating the HER performance of electrocatalysts. As can be seen from 

57 the figure, the ΔGH* values of these eight active sites are all relatively low (around 0.3 

58 eV). This indicates that the PtNiFeCoCu HEA (111) exhibits notable HER performance 

59 under acidic conditions. In addition, there is a significant synergistic effect at multiple 

60 sites in the second step of H* adsorption/H2 desorption (Heyrovsky step).
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62 Figure S5 Free energy (ΔGH*) diagram for HER at different catalytic sites on the 

63 PtNiFeCoCu HEA (111) surface at U=0, pH=0.
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