Modulating electronic properties and band alignments of arsenene/ $MoSi_2N_4$ van der Waals heterostructure via strain and electric field

Jun Zhao $^{\dagger,*},$ Yunxi Qi $^{\dagger},$ and Can Yao †

[†]New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China

Hui Zeng*

[‡] School of Microelectronics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

Fig. S1 The projected electronic structures of the arsenene/MoSi₂N₄ heterostructure with A₁, A₂, and A₃ stackings (from left to right). The blue color and red color represent the contributions given by the MoSi₂N₄ sublayer and the arsenene sublayer, respectively.

Fig. S2 The atomic structure of (a) the arsenene/ $MoSi_2N_4$ heterostructure with in-plane lattice constant of 5.85 (Å) and (b) the total energy of the heterostructure as a function of different in-plane lattice constants.

Fig. S3 The (a) electronic structure and the (b) phonon spectrum of the monolayered arsenene supercell with $\sqrt{3} \times \sqrt{3}$ unit cells and its lattice constants are set to a=b=5.85 Å.

Fig. S4 Phonon spectral of the arsenene/MoSi₂N₄ heterostructure under different in-plane strains when (a) $\varepsilon_{xy} = 0\%$, (b) $\varepsilon_{xy} = 6\%$, and (c) $\varepsilon_{xy} = -6\%$, respectively.

Fig. S5 Orbital projected density of states (DOS) of the arsenene/MoSi₂N₄ heterostructure with all orbitals, including *s*-, *p*-, and *d*-orbitals for (a) As atoms and (b) Mo atoms. (c) The charge density difference of the arsenene/MoSi₂N₄ heterostructure with isosurface cutoff of 0.0001 e/Å³, and the electron depletion and accumulation are labelled by red and yellow colors, respectively.

Fig. S6 The electronic structures of the arsenene monolayer with (a) 1 primitive cell and (b) $\sqrt{3} \times \sqrt{3}$ supercell. The electronic structures of the MoSi₂N₄ monolayer with (c) 1 primitive cell and (d) 2×2 supercell.

Fig. S7 HSE06 functional calculation of electronic band structure of the arsenene/ $MoSi_2N_4$ heterostructure.

Fig. S8 The (a) plane-averaged electrostatic potential along z direction and the (b) band edge evolution of the two sublayers and the band edge of the arsenene/MoSi₂N₄ heterostructure. The band alignment of the vdW heterostructure is highlighted by black dotted square, and its band edges are denoted by yellow color.

Fig. S9 The projected band structures of the arsenene/MoSi₂N₄ heterostructure under different in-plane biaxial strains. Red color and blue color represent the contributions of the arsenene monolayer and the MoSi₂N₄ monolayer, respectively.

Fig. S10 The projected band structures of the arsenene/MoSi₂N₄ heterostructure under different vertical strains. Red color and blue color represent the contributions of the arsenene monolayer and the MoSi₂N₄ monolayer, respectively.

Fig. S11 The projected band structures of the arsenene/MoSi₂N₄ heterostructure under

different external electric fields. Red color and blue color represent the contributions of the arsenene monolayer and the $MoSi_2N_4$ monolayer, respectively.

Table S1 Lattice constants *a* and *b*, equilibrium distance D_0 between the two monolayers, bandgap E_g , total energy E_t and binding energy E_b for different stacking structures.

Stackings	a = b (Å)	$D_{ heta}\left(\mathrm{\AA} ight)$	$E_g(eV)$	$E_t(eV)$	$E_b(eV)$
A ₁	5.85	3.47	0.5159	-279.1501	-0.5688
A_2	5.85	3.46	0.5133	-279.1496	-0.5670
A ₃	5.85	3.50	0.5229	-279.1489	-0.5659