Accidental Triplet Harvesting in Donor-acceptor Dyads with Low Spin-orbit Coupling[†]

Pijush Karak, Torsha Moitra, Ambar Banerjee*, Kenneth Ruud*, Swapan Chakrabarti*

email: ambar.banerjee@physics.uu.se, kenneth.ruud@uit.no, swcchem@caluniv.ac.in

Contents

S1	Explicit solvent optimized ground state geometry of molecule 1	S2
S2	CASSCF converged active orbitals of molecule 1	S2
S 3	Computation of excitation energies, absorption wavelengths, ordering and nature of the states performed on both B3LYP and CAM-B3LYP optimized ground and first excited singlet state geometries in TD-DFT,STEOM-DLPNO-CCSD and NEVPT2 methods	S 3
S 4	Analysis of Charge-transfer number of all the studied molecules	S 4
S 5	IC rate constants between $S_{CT-Phen}$ and $S_{CT-Naph}$ at various dihedral angles of molecule 1.	S 7
S 6	ISC and IC mechanisms of molecule 2	S 7
S 7	ISC mechanisms of molecule 3 and 4	S10
S 8	Discussion about the Duschinsky rotation matrix (J) and displacement vector (D)	S14
S9	$k_{\rm ISC}^{\rm DSO}$ values at 300K for all three pathways of molecules 1 and 2 with or without incorporating the effect of Duschinsky rotation matrix (J) and displacement vector (D) at different dihedral angles	S15
S10	Effect of basis set on the spin-orbit coupling matrix elements	S18
S 11	Effect of solvent polarity on the energetic ordering of the excited states	S18
S12	Nature of the mode-specific NACMEs	S20
S13	Frequencies of all geometries of molecule 1 computed at (B3LYP/6-311G(d,p)) level of theory	S23
S14	Frequencies of all geometries of molecule 2 computed at (B3LYP/6-311G(d,p)) level of theory	S33
S 15	Coordinates of the optimized geometries of molecule 1	S40
S16	Coordinates of the optimized geometries of molecule 2	S46
S 17	Coordinates of the optimized geometries of molecule 3	S 56
S18	Coordinates of the optimized geometries of molecule 4	S62
S19	Coordinates of the optimized geometries of molecule 5	S69
S20	Frequencies of all geometries of molecule 5 computed at (B3LYP/6-311G(d,p)) level of theory	S75

S1 Explicit solvent optimized ground state geometry of molecule 1

Fig S1. Optimized geometry of molecule 1 in presence of explicit DMAc solvent molecules.

S2 CASSCF converged active orbitals of molecule 1

Fig S2. The state averaged (SA) CASSCF converged active orbitals are obtained by using an active space composed of six electrons distributed in 5 orbitals. 9 triplet and 10 singlet states are included in this state averaged CASSCF calculation.

S3 Computation of excitation energies, absorption wavelengths, ordering and nature of the states performed on both B3LYP and CAM-B3LYP optimized ground and first excited singlet state geometries in TD-DFT,STEOM-DLPNO-CCSD and NEVPT2 methods

Fig S3. Excitation energies, absorption wavelengths, ordering and nature of the state in three different methods using both B3LYP and CAM-B3LYP optimized ground state geometries of molecule 1.

Fig S4. Excitation energies, absorption wavelengths, ordering and nature of the state in three different methods using both B3LYP and CAM-B3LYP optimized first excited singlet state geometries of molecule **1**.

S4 Analysis of Charge-transfer number of all the studied molecules

Table S1. Charge Transfer (CT) values of excited singlet and triplet electronic states of all the studied molecules at their equilibrium geometries.

state of molecule 1	СТ	state of molecule 2	СТ	state of molecule 3	СТ	state of molecule 4	СТ
S _{CT-Naph}	0.931	S _{CT-Naph}	0.951	S _{CT-Naph}	0.954	S _{CT-Naph}	0.957
S _{CT-Phen}	0.391	S _{CT-Biph}	0.477	S _{CT-Phen}	0.293	S _{CT-Phen}	0.300
T _{CT-Phen}	0.393	T _{CT-Biph}	0.318	T _{CT-Phen}	0.223	T _{CT-Phen}	0.256
T _{CT-Naph}	0.820	T _{CT-Naph}	0.941	T _{CT-Naph}	0.947	T _{CT-Naph}	0.886
$T_{LE-Naph}$	0.052	$T_{LE-Naph}$	0.041	$T_{LE-Naph}$	0.041	$T_{LE-Naph}$	0.068

To quantify the nature of the transition associated with the singlet and triplet excited electronic states, we

have performed a charge transfer (CT) analysis of all the molecules studied using TheoDore.¹ The computed CT values of each of the electronic states are given in Table S1. CT numbers greater than 0.8 for a particular state suggests that the state is associated with a strong charge-transfer character. From Table S1, it is evident that for molecule **1**, the CT number of $S_{CT-Naph}$ is 0.93 and in the other three molecules, the CT number for this state is 0.95. For the $S_{CT-Phen}$ state, the CT numbers have been found to be 0.39, 0.47, 0.29 and 0.30 in molecules **1**, **2**, **3** and **4**, respectively. Therefore, $S_{CT-Naph}$ and $S_{CT-Phen}$ are strong and weak charge transfer states, respectively. The same is true for the $T_{CT-Naph}$ and $T_{CT-Phen}$ states. On the other hand, the $T_{LE-Naph}$ state, with a very small CT value of less than 0.1, is denoted as the locally excitation (LE) state.

To understand the trend of variation of the CT and LE characters with the decrease in D-A dihedral angle from 90°, we have performed CT analysis at an interval of 4° dihedral angle up to 60° using TheoDore software. The computed CT number of molecule **1** are given in Table S2. With the decrease in D-A dihedral angle the CT number of S_{CT-Naph} and T_{CT-Naph} states are gradually decreased from 0.931 and 0.820 to 0.854 and 0.375, respectively. The diminishing rate of the CT number with dihedral angle is much more faster for T_{CT-Naph} compared to S_{CT-Naph}. On the other hand, the reverse trend has been noticed for S_{CT-Phen} and T_{CT-Phen}. The CT number of S_{CT-Phen} and T_{CT-Phen} vary from 0.391 to 0.407 and 0.391 to 0.489 respectively. The increasing nature of the CT values has also been seen in T_{LE-Naph} state in the range of 0.052 to 0.303 with the decrease in dihedral angle. In addition, we have also performed hole and electron distribution of the excited singlet and

dihadral angla	CT of	CT of	CT of	CT of	CT of
unieurai angle	state $S_{CT-Naph}$	state T _{CT–Naph}	state $S_{CT-Phen}$	state T _{CT-Phen}	state T _{LE–Naph}
90.2	0.931	0.820	0.391	0.391	0.052
88	0.930	0.699	0.391	0.387	0.167
84	0.927	0.561	0.391	0.412	0.267
80	0.920	0.505	0.390	0.442	0.284
76	0.911	0.469	0.394	0.461	0.290
72	0.899	0.439	0.396	0.473	0.294
68	0.886	0.414	0.399	0.481	0.297
64	0.871	0.393	0.401	0.486	0.300
60	0.854	0.375	0.407	0.489	0.303

Table S2. Charge Transfer (CT) values of excited singlet and triplet electronic states of molecule 1 at different dihedral angle.

triplet states in order to quantify the nature of these states (CT or LE) using Multiwfn software.^{2,3}. The pictorial representation of the distribution of the hole and electron of the excited singlet and triplet states are given in Fig S5. From this figure, it is clear that the hole and electron are distinctly located on two different moieties namely, phenoxazine and naphthyl respectively, indicating a strong charge-transfer character for the S/T_{CT-naph} state. On the other hand, in case of $T_{LE-Naph}$ state, the hole and electron are localized on the same naphthyl part, indicating the locally-exciton (LE) type transition. The separation between hole and electron distribution of the S/T_{CT-Phen} state is small which in turn implies a weak CT state. The values of *D* and *S_r* indices associated with the singlet and triplet excited states are collected in Table S3 and the results are generated from Multiwfn software. A strong CT state is defined by a large and small values of *D* and *S_r* indices, respectively, and the reverse is true for the LE state.

Table S3. The values of D and S_r indices for the excited singlet and the triplet electronic states of molecule **1** as obtained from Multiwfn software.

Transition	D()	S_r
$S_0 \rightarrow S_{CT-Naph}$	4.15	0.15
$S_0 \rightarrow S_{CT-Phen}$	0.14	0.68
$S_0 \rightarrow T_{CT-Naph}$	2.53	0.51
$S_0 \rightarrow T_{LE-Naph}$	0.08	0.92
$S_0 \rightarrow T_{CT-Phen}$	1.23	0.67

Fig S5. Hole and electron distributions of the excited singlet and triplet states of molecule 1 computed at the TD-DFT (B3LYP/6-311G(d,p)) level of theory using Multiwfn software. The blue and green color indicates the hole and electron distributions respectively.

S5 IC rate constants between S_{CT-Phen} and S_{CT-Naph} at various dihedral angles of molecule 1.

Dihedral angle	ΔE	norm of NAC	k _{IC}
90.2	0.26	2.89	0.52×10^{11}
88	0.27	2.91	0.69×10^{11}
84	0.27	3.48	0.95×10^{11}
80	0.28	1.95	0.21×10^{11}
76	0.29	4.88	1.15×10^{11}
72	0.31	6.97	4.23×10^{11}
68	0.33	6.08	0.88×10^{11}
64	0.35	4.18	0.64×10^{11}
60	0.38	31.43	4.30×10^{12}

Table S4. k_{IC} at 300K in s⁻¹ of $S_{CT-Phen} \leadsto S_{CT-Naph}$ channel and ΔE and norm of NAC vector between $S_{CT-Phen}$ and $S_{CT-Naph}$ in eV and bohr⁻¹.

Table S5. SV-induced k_{ISC} of $S_{CT-Naph} \leadsto T_{CT-Phen}$ of molecule 1

dihedral angle	ΔE (eV)	norm of NAC (bohr ⁻¹)	$k_{\rm ISC}^{\rm SV}$ (s ⁻¹)
68	0.12	14.63	4.32×10^{5}
64	0.06	31.76	2.67×10^{7}

It should be mentioned here that the vibronic correction to the SOC or Herzberg-Teller contribution in the determination of ISC rate is a suitable approach for the $S_{CT-Naph} \longrightarrow T_{CT-Naph}$ pathway since direct-SOC between them is very small. In this context, following C. Marian's method,⁴ we already have developed a code⁵ and computed the HT contribution towards k_{ISC} for the $S_{CT-Naph} \longrightarrow T_{CT-Naph}$ channel and the value of the corresponding rate constant is $4.49 \times 10^5 \text{ s}^{-1}$ at equilibrium dihedral angle. In this case, the derivative SOC is computed for the normal mode, where the rotational motion of the naphthyl moiety across the C-N sigma bond is present. The calculated same ISC rate constant at dihedral angle of 72° has been found to be 3.18 $\times 10^7 \text{ s}^{-1}$, indicating that the HT contribution is unable to meet the experimental rate constant value. It is also worth mentioning that we didn't compute the HT contribution for all the normal modes and we believe that such calculations are a bit difficult for a molecule having 171 normal modes.

S6 ISC and IC mechanisms of molecule 2

The only difference between molecules 1 and 2 is that the phenyl group attached to the phenoxazine moiety in molecule 1 is replaced by the biphenyl group in molecule 2. The structure of molecule 2 is given in Fig S6a. The bright state of molecule 2 has $S_{CT-Biph}$ character, which is similar to the $S_{CT-Phen}$ state of 1. The nature of the other excited states, namely ($S_{CT-Naph}$, $T_{CT-Biph}$, $T_{CT-Naph}$ and $T_{LE-Naph}$) are exactly identical to the corresponding states of molecule 1. Similar to molecule 1, the effect of rotation around the N-C sigma bond on the energy levels and characters of the various singlet and triplet states have been investigated for 2 and the rotation axis is depicted in Fig S6. The range of variation of the dihedral angle has been kept the same as that considered for 1.

The nature of the CASSCF orbitals as evident from Fig S6b reveals that with the decrease in dihedral angle, the pure CT and LE states at the equilibrium geometry gain some LE and CT character, respectively. Due to orbital mixing during free rotation, the SOC among the CT-LE states start to decrease, while an opposite behavior is observed for CT-CT states and the calculated SOC values are given in Table S6. Almost similar variation of the energies of both the singlet and the triplet excited states of molecule **2** has been found as for molecule **1**. The only difference is that in molecule **2**, $T_{LE-Naph}$ and $T_{CT-Biph}$ states are located 0.03 and 0.07 eV above and below the $S_{CT-Naph}$ state at 60° whereas both the LE and the CT triplet states have placed themselves 0.004 eV lower and higher in energy with respect to $S_{CT-Naph}$, respectively. Nevertheless, all these states are energetically very close to each other in both molecules. The potential energy surfaces of the relevant singlet

Fig S6. (a) Structure of the photoredox molecule **2** and the rotation along the C-N bond involving the dihedral angle of the C-C-N-C atoms in blue color. (b) Nature of the CASSCF orbitals involved in generation of the CT-Naph, CT-Biph and LE-Naph states and their orbital mixing with decrease in dihedral angle. (c) Potential energy surfaces of CT-Naph, CT-Biph and LE-Naph singlets and triplets states generated due to free rotation around the sigma bond.(d) Nature of variation of k_{ISC} for both DSO and SV mechanisms.

and triples states with the variation of the selected dihedral angle are depicted in Fig S6c. In molecule **2**, the possible ISC channels are the (a) $S_{CT-Naph} \leadsto T_{CT-Biph}$, (b) $S_{CT-Naph} \leadsto T_{LE-Naph}$ and (c) $S_{CT-Naph} \leadsto T_{CT-Naph}$. The maximum k_{ISC} achieved with direct-SOC for (a), (b) and (c) pathways are 5.54×10^7 , 2.93×10^7 and 3.63×10^6 s⁻¹ at a dihedral angle 84° , 84° and 68° , respectively and can be found in Table S6.

It is to be noted that the largest DSO-aided k_{ISC} value is still lower than the experimentally observed ISC rate constant⁶ (1.69×10⁸ s⁻¹), indicating that the DSO only ISC mechanism is not the proper route for triplet harvesting. In this case too, the inclusion of the spin-vibronic (SV) contribution to k_{ISC} in the $S_{CT-Naph} \leadsto T_{CT-Naph}$ channel helps reach a k_{ISC} value of $2.99 \times 10^8 \text{ s}^{-1}$, which is in good agreement with the experimental findings. The variation of DSO and SV induced k_{ISC} with dihedral angle are depicted in Fig S6d and it is seen that at 72°, the SV-ISC rate constant in channel (c) outweighs the DSO aided k_{ISC} obtained in all of the (a), (b) and (c) pathways. The computed SV promoted k_{ISC} for the $S_{CT-Naph} \leadsto T_{CT-Naph}$ pathway up to ~ 72° is presented in Table S7. Earlier, it was found that free rotation induced reorganization of the various triplet states of molecule 2^7 may lead to an increase of SOC from 0.85 cm⁻¹ between $S_{CT-Naph}$ and $T_{LE-Naph}$, indicating that SOC alone only can increase the rate constant of ISC between $S_{CT-Naph}$ and $T_{LE-Naph}$ by a factor of three compared to that between $S_{CT-Naph}$ and $T_{CT-Biph}$.

Table S6. Direct SOC induced k_{ISC} at 300K, energy gap and the magnitude of the spin-orbit coupling at different dihedral angles of molecule **2**. Here, a, b and c represent $S_{CT-Naph} \leadsto T_{CT-Biph}$, $S_{CT-Naph} \leadsto T_{LE-Naph}$ and $S_{CT-Naph} \leadsto T_{CT-Naph}$ transitions, respectively. The unit of k_{ISC} , ΔE and SOC are s⁻¹, eV and cm⁻¹, respectively.

Dihedral -angle	ΔE^{a}	SOC ^a	k _{ISC}	ΔE^{b}	SOC ^b	k ^b _{ISC}	ΔE^{c}	SOC ^c	k ^c _{ISC}
89.53	0.18	0.87	2.10×10^{7}	-0.20	1.57	8.90×10^{6}	-0.0007	0.07	6.35×10^4
88	0.18	0.88	4.90×10^{7}	-0.19	1.57	2.14×10^{7}	-0.002	0.08	2.22×10^{5}
84	0.18	0.94	5.54×10^{7}	-0.19	1.55	2.93×10^{7}	-0.01	0.13	4.20×10^{5}
80	0.17	1.03	4.21×10^{7}	-0.17	1.53	2.92×10^{7}	-0.03	0.23	2.22×10^{5}
76	0.16	1.02	3.39×10^{7}	-0.15	1.50	2.36×10^{7}	-0.05	0.33	1.06×10^{6}
72	0.14	1.15	2.52×10^{6}	-0.12	1.47	2.34×10^{7}	-0.08	0.41	2.10×10^{6}
68	0.12	1.19	2.02×10^{6}	-0.09	1.43	2.79×10^{7}	-0.12	0.48	3.63×10^{6}
64	0.10	1.21	1.03×10^{6}	-0.06	1.38	1.96×10^{7}	-0.15	0.51	2.43×10^{6}
60	0.07	1.22	3.12×10^{6}	-0.03	1.34	7.03×10^{6}	-0.19	0.57	4.93×10^{5}

Table S7. Spin-vibronic coupling driven k_{ISC} at 300K in s⁻¹ of $S_{CT-Naph} \rightsquigarrow T_{CT-Naph}$ and ΔE and NAC between $T_{LE-Naph}$ and $T_{CT-Naph}$ in eV and bohr⁻¹ respectively.

Dihedral angle	ΔE	norm of NAC	k ^{SV} ISC
89.53	0.20	2.82	1.37×10^{6}
88	0.198	4.64	3.65×10^{6}
84	0.17	8.21	1.36×10^{7}
80	0.14	10.97	2.23×10^{7}
76	0.094	17.38	4.26×10^{7}
72	0.037	45.46	2.99×10^{8}

Fig S7. Schematic diagram of internal conversion (IC) and ISC mechanisms at various dihedral angles and their associated rate constants.

To examine the validity of the proposed ISC mechanism operating in molecule **2**, we have calculated the rate constant of internal conversion (IC) between the $S_{CT-Biph}$ and $S_{CT-Naph}$ states down to 60° and the corresponding data are collected in Table S8. The calculated k_{IC} values are of the order of 10¹¹ and the values are quite close to the experimentally observed IC rate constant⁶ (0.5 × 10¹¹ s⁻¹) at all dihedral angles, suggesting that sufficient population transfer to the $S_{CT-Naph}$ state is possible . In particular, the value of k_{IC} at 72° is 1.22 × 10¹¹ s⁻¹ which guarantees participation of the lowest excited singlet state ($S_{CT-Naph}$) in the SV-ISC mechanism. The pictorial representation of various ISC mechanisms at three different dihedral angles are shown in Fig S7a and the trends are very similar to that found for molecule **1** in the main manuscript. The inset box in the lower right of Fig S7 contains the colors used for various nonradiative processes such as IC and ISC, and Franck-Condon excitation.

The major findings based on our theoretically evaluated nonradiative rate constants for molecules 1 and 2

Dihedral angle	ΔE	norm of NAC	k _{IC}
89.53	0.153	1.83	0.34×10^{11}
88	0.154	1.85	2.84×10^{11}
84	0.158	1.86	2.52×10^{11}
80	0.168	1.84	0.93×10^{11}
76	0.17	1.89	1.11×10^{11}
72	0.19	1.94	1.22×10^{11}
68	0.21	2.01	1.22×10^{11}
64	0.23	2.07	1.20×10^{11}
60	0.25	2.12	0.72×10^{11}

Table S8. k_{IC} at 300K in s⁻¹ of $S_{CT-Biph} \leadsto S_{CT-Naph}$ channel and ΔE and NAC between $S_{CT-Phen}$ and $S_{CT-Naph}$ in eV and bohr⁻¹.

elucidate the universality of the SV-ISC mechanism for the population gain in the lowest triplet state of a donoracceptor dyad separated by a single bond.

S7 ISC mechanisms of molecule 3 and 4

Table S9. Direct SOC induced k_{ISC} at 300K, energy gap and the magnitude of the spin-orbit coupling at different dihedral angles of molecule **3**. Here, a, b and c represent $S_{CT-Naph} \leadsto T_{CT-Phen}$, $S_{CT-Naph} \leadsto T_{LE-Naph}$ and $S_{CT-Naph} \leadsto T_{CT-Naph}$ transitions, respectively. The unit of k_{ISC} , ΔE and SOC are s⁻¹, eV and cm⁻¹, respectively.

Dihedral angle	ΔE^{a}	SOC ^a	k _{ISC}	ΔE^{b}	SOC ^b	k ^b _{ISC}	ΔE^{c}	SOC ^c	k ^c _{ISC}
89.80	0.12	0.926	2.74×10^{7}	-0.126	0.91	3.75×10^{6}	-0.002	0.08	2.02×10^5
88	0.12	0.917	2.55×10^{7}	-0.128	0.894	3.16×10^{6}	-0.002	0.11	3.65×10^{5}
84	0.118	0.907	2.69×10^{7}	-0.116	0.890	4.15×10^{6}	-0.01	0.18	1.27×10^{6}
80	0.113	0.904	2.56×10^{7}	-0.092	0.888	3.28×10^{6}	-0.03	0.25	1.57×10^{6}
78	0.109	0.911	2.18×10^{7}	-0.077	0.879	2.41×10^{6}	-0.04	0.28	4.85×10^{6}
76	0.10	0.901	1.66×10^{7}	-0.063	0.881	1.59×10^{6}	-0.056	0.31	0.74×10^{6}
72	0.084	0.911	0.86×10^{7}	-0.029	0.884	2.53×10^{6}	-0.09	0.37	3.77×10^{5}
68	0.058	0.909	3.13×10^{6}	0.003	0.896	0.68×10^{6}	-0.12	0.42	1.27×10^{5}
64	0.039	0.917	1.89×10^{6}	0.034	0.931	0.94×10^{6}	-0.16	0.47	3.24×10^{5}
60	-0.002	0.899	8.73×10^{5}	0.053	0.981	1.13×10^{6}	-0.19	0.54	5.09×10^{5}

Table S10. Spin-vibronic coupling driven k_{ISC} of molecule **3** at 300K in s^{-1} of $S_{CT-Naph} \leadsto T_{CT-Naph}$ and ΔE and NAC between $T_{LE-Naph}$ and $T_{CT-Naph}$ in eV and bohr⁻¹ respectively.

Dihedral angle	ΔΕ	norm of NAC	k ^{SV} _{ISC}
89.80	0.124	4.80	0.64×10^{5}
88	0.126	4.83	0.71×10^{5}
84	0.104	6.83	2.41×10^{5}
80	0.062	13.11	1.95×10^{6}
78	0.034	28.08	1.12×10^{7}
76	0.007	148.66	5.11×10^{8}

In addition to molecules **1** and **2**, the other two important D-A molecules investigated here also support our proposed accidental triplet harvesting mechanism. The structure of these two molecules (**3** and **4**) and the rotation axes are shown in Figs S8a and S10a, respectively. We find that the nature of the excited singlet and triplet states obtained upon photoexcitation are the same as those of **1** and **2** and the relevant excitation characters are depicted in Figs S8b and S10b. For both **3** and **4**, the variation of the relative energies of the excited electronic states (singlet and triplets) due to the rotation around the C-N sigma bond are shown in Figs S8c and S10c. From these figures, the only significant change that can be noted is the rapid decrease

Fig S8. (a) Structure of the photoredox molecule **3** and the rotation along the C-N bond involving the dihedral angle of the C-C-N-C atoms in blue color. (b) Nature of the CASSCF orbitals involved in generation of the CT-Naph, CT-Phen and LE-Naph states and their orbital mixing with decrease in dihedral angle. (c) Potential energy surfaces of CT-Naph, CT-Phen and LE-Naph singlets and triplets states generated due to free rotation around the sigma bond.(d) Nature of variation of k_{ISC} for both DSO and SV mechanisms.

Fig S9. Schematic diagram of ISC mechanisms of molecule 3 at various dihedral angles and their associated rate constants.

of energy of the $T_{LE-Naph}$ state and as a consequence, the potential energy curves of $T_{LE-Naph}$ crosses $T_{CT-Naph}$ and $S_{CT-Naph}$ at earlier dihedral angles compared to what was observed in molecules 1 and 2. Interestingly, the possible ISC pathways in both 3 and 4 are also identical to what has been seen in 1. The energy gap, direct-SOC

and the associated rate constants of all three probable pathways are also provided in Tables S9 and S11. The computed rate constants indicate that none of the possible DSO-assisted ISC pathways are capable of reaching the experimental ISC rate constants of $1.7-2.3 \times 10^8$ and $1.5-1.8 \times 10^8$ s⁻¹ for **3** and **4**, respectively.⁸ However, after incorporating the effect of the SV part into the the expression of k_{ISC} along the S_{CT-Naph} \longrightarrow T_{CT-Naph} pathway of molecules **3** and **4**, the rate constants have increased substantially and the corresponding values have been found to be 5.11×10^8 and 1.67×10^8 s⁻¹, respectively. Overall, the calculated results corroborate well with the experimental findings. We also note that in molecules **3** and **4**, the largest SV-aided k_{ISC} are found at dihedral angles of 76° and 78°, respectively. The variation of the DSO and the SV-induced ISC rate constants at various dihedral angles for both molecules are shown in Figs S8d and S10d. The computed SV-guided ISC rate constants at three different dihedral angles are also depicted in Figs S9 and S11. From these theoretical findings, we can infer that all the molecules studied follow the free rotation induced accidental SV mechanism to ensure efficient triplet harvesting process.

Fig S10. (a) Structure of the photoredox molecule **4** and the rotation along the C-N bond involving the dihedral angle of the C-C-N-C atoms in blue color. (b) Nature of the CASSCF orbitals involved in generation of the CT-Naph, CT-Phen and LE-Naph states and their orbital mixing with decrease in dihedral angle. (c) Potential energy surfaces of CT-Naph, CT-Phen and LE-Naph singlets and triplets states generated due to free rotation around the sigma bond.(d) Nature of variation of k_{ISC} for both DSO and SV mechanisms.

Table S11. Direct SOC induced k_{ISC} at 300K, energy gap and the magnitude of the spin-orbit coupling at different dihedral angles of molecule **4**. Here, a, b and c represent $S_{CT-Naph} \leadsto T_{CT-Phen}$, $S_{CT-Naph} \leadsto T_{LE-Naph}$ and $S_{CT-Naph} \leadsto T_{CT-Naph}$ transitions, respectively. The unit of k_{ISC} , ΔE and SOC are s⁻¹, eV and cm⁻¹, respectively.

					1	. 1			
Dihedral angle	ΔE^{a}	SOC ^a	k _{ISC}	ΔE^{b}	SOC ^b	k ^b ISC	ΔE^{c}	SOC ^c	k ^c _{ISC}
89.84	0.151	0.851	1.72×10^{7}	-0.172	0.724	2.26×10^{6}	0.025	0.167	5.32×10^{5}
88	0.151	0.841	1.66×10^{7}	-0.169	0.722	2.71×10^{6}	0.023	0.169	5.19×10^{5}
84	0.149	0.858	1.88×10^{7}	-0.138	0.715	1.85×10^{6}	0.007	0.206	3.67×10^{5}
80	0.14	0.879	1.98×10^{7}	-0.09	0.699	4.90×10^{6}	-0.02	0.252	3.49×10^{5}
78	0.134	0.893	1.83×10^{7}	-0.064	0.702	0.81×10^{7}	-0.037	0.270	9.47×10^{5}
76	0.127	0.908	1.53×10^{7}	-0.038	0.700	1.05×10^{7}	-0.055	0.287	1.57×10^{6}
72	0.11	0.943	0.84×10^{7}	0.007	0.709	1.12×10^{7}	-0.092	0.33	2.21×10^{6}
68	0.099	0.953	4.31×10^{6}	0.048	0.724	0.96×10^{7}	-0.164	0.40	3.58×10^{6}
64	0.075	1.01	1.39×10^{6}	0.079	0.766	5.72×10^{6}	-0.192	0.38	0.73×10^{6}
60	0.049	1.05	2.71×10^{6}	0.104	0.829	2.28×10^{6}	-0.228	0.41	0.72×10^{6}

Table S12. Spin-vibronic coupling driven k_{ISC} of molecule **4** at 300K in s^{-1} of $S_{CT-Naph} \leadsto T_{CT-Naph}$ and ΔE and NAC between $T_{LE-Naph}$ and $T_{CT-Naph}$ in eV and bohr⁻¹ respectively.

Dihedral angle	ΔE	norm of NAC	k ^{SV} _{ISC}
89.84	0.197	2.99	0.99×10^{5}
88	0.192	3.14	1.15×10^{5}
84	0.145	4.94	5.61×10^{5}
80	0.07	12.50	1.01×10^{7}
78	0.027	35.68	1.67×10^{8}

Fig S11. Schematic diagram of ISC mechanisms of molecule 4 at various dihedral angles and their associated rate constants.

S8 Discussion about the Duschinsky rotation matrix (J) and displacement vector (D)

Upon photoexcitation from the ground to the excited electronic state, the normal mode coordinates of the excited state gets displaced and rotated with respect to the ground state. This is true for any pair of initial and final electronic states. If the normal mode coordinates of the initial and final electronic states are represented by Q_i and Q_f , respectively, the connection between these two coordinates is described by the following relation

$$\mathbf{Q}_f = \sum_i \mathbf{J}_{if} \mathbf{Q}_i + \mathbf{D}_f,\tag{S1}$$

where **J** and **D** are the Duschinsky rotation matrix and displacement vectors, respectively. **J** is a unit less matrix whereas **D** can be expressed in massweighted coordinate with units of $(amu)^{0.5}$ as

$$\mathbf{D} = \mathbf{L}\sqrt{m}(r - r') \tag{S2}$$

The graphical representation of the relation between the normal-mode coordinates of the ground and excited

Fig S12. Relation between the normal mode coordinates of the initial and the final electronic state in terms of rotation and displacement.

electronic states is shown in Fig S12. Here, \mathbf{Q}' and \mathbf{Q}'' represents the coordinates of the normal mode of the initial and final electronic states, respectively. r and r' denotes the Cartesian displacements of the initial and final states, respectively, with respect to a reference point. L is the eigenvector matrix obtained after diagonalizing the mass-weighted Cartesian force constant matrix and m indicates the mass of the nuclei. D is simply the translation of the final state with respect to that of initial state. J on the other hand rotates the normal coordinates of the final electronic state with respect to that of the initial state. J is a unitary matrix and thus in principle, the determinant of this matrix should be one. However, a large number of off-diagonal elements may be found if the vibrational and the rotational motions are coupled as has been observed for geometries with significant change in different structural parameters such as dihderal angles, bond angles and bond lengths. In this situation, the determinant of J will deviate from 1. The off-diagonal elements of the Duschinsky rotation matrix actually indicate the coupling between normal modes of two different electronic states. The larger the off-diagonal elements, the higher will the coupling between them be. Usually, a small energy gap and large SOC play dominant roles in determining the values of k_{ISC} rate constant. However, when vibrational effects are taken into account in the computation of any nonradiative rate constants, the Duschinsky rotation matrix and displacement vectors appear automatically and they often also play important roles. For example, the displacement vector may change the value of k_{ISC} by two orders of magnitude for fluorenone while the Duschinsky rotation and displacement vector may alter the rate constant of ISC of benzophenone by

one order of magnitude.⁹. It has also been found that for an energy gap less than 0.7 eV between the singlet and the triplet states, the ISC rate constant without Duschinsky rotation is decreased by one to three orders magnitude.¹⁰

S9 k^{DSO}_{ISC} values at 300K for all three pathways of molecules 1 and 2 with or without incorporating the effect of Duschinsky rotation matrix (J) and displacement vector (D) at different dihedral angles

Table S13. a,b and c represent k_{ISC}^{DSO} of $S_{CT-Naph} \leadsto T_{CT-Phen}$, $S_{CT-Naph} \leadsto T_{LE-Naph}$ and $S_{CT-Naph} \leadsto T_{CT-Naph}$ transitions, respectively, with I and II indicate without inclusion of Duschinsky rotation matrix (**J**) and displacement vector (**D**) respectively. The unit of k_{ISC} , ΔE and SOC are s⁻¹, eV and cm⁻¹, respectively.

Dihedral angle	k _{ISC} ^{a,I}	k _{ISC} ^{a,II}	k ^{b,I} ISC	k ^{b,II} ISC	k ^{c,I} ISC	k ^{c,II} ISC
90.2	3.21×10^{7}	3.80×10^{6}	4.06×10^{5}	6.07×10^{7}	6.29×10^{5}	5.11×10^{6}
88	3.57×10^{7}	1.34×10^{6}	9.98×10^{5}	6.43×10^{7}	8.65×10^{5}	7.03×10^{6}
84	4.16×10^{7}	3.47×10^{6}	2.12×10^{6}	3.04×10^{7}	1.89×10^{6}	1.48×10^{7}
80	3.86×10^{7}	3.17×10^{7}	4.02×10^{6}	2.95×10^{7}	3.23×10^{6}	2.24×10^{7}
76	2.48×10^{7}	2.75×10^{7}	7.77×10^{6}	3.47×10^{7}	3.55×10^{6}	1.98×10^{7}
72	7.08×10^{6}	4.21×10^{7}	1.37×10^{7}	7.86×10^{7}	5.03×10^{6}	2.45×10^{7}
68	2.35×10^{6}	4.11×10^{7}	4.79×10^{6}	5.78×10^{7}	2.97×10^{6}	2.89×10^{7}
64	4.54×10^{6}	4.82×10^{7}	1.64×10^{7}	7.61×10^{7}	6.49×10^{5}	6.08×10^{6}
60	4.00×10^{6}	5.09×10^{7}	3.50×10^{6}	8.07×10^{7}	3.81×10^{5}	3.54×10^{5}

The detailed discussion of the influence of the Duschinsky rotation matrix and displacement vector on the intersystem crossing rate of molecule **1** are provided in the main manuscript and the computed rate constants are given in Table S13.

Table S14. a,b and c represent k_{ISC}^{DSO} of $S_{CT-Naph} \leadsto T_{CT-Biph}$, $S_{CT-Naph} \leadsto T_{LE-Naph}$ and $S_{CT-Naph} \leadsto T_{CT-Naph}$ transitions, respectively, with I and II indicate without inclusion of Duschinsky rotation matrix (**J**) and displacement vector (**D**) respectively. The unit of k_{ISC} , ΔE and SOC are s⁻¹, eV and cm⁻¹, respectively.

Dihedral angle	k ^{a,I} ISC	k ^{a,II} ISC	k ^{b,I} ISC	k ^{b,II} ISC	k ^{c,I} ISC	k ^{c,II} ISC
89.53	3.57×10^{7}	1.82×10^{7}	5.20×10^4	3.86×10^{7}	1.58×10^{5}	1.14×10^{6}
88	8.11×10^{7}	3.67×10^{7}	1.86×10^{5}	1.38×10^{8}	4.50×10^{5}	3.09×10^{6}
84	9.44×10^{7}	5.11×10^{7}	2.27×10^{6}	1.18×10^{8}	1.12×10^{6}	1.25×10^{7}
80	8.67×10^{7}	4.21×10^{7}	5.79×10^{6}	6.43×10^{7}	5.92×10^{5}	2.16×10^{7}
76	5.08×10^{7}	4.74×10^{7}	1.36×10^{7}	1.61×10^{7}	3.89×10^{5}	2.10×10^{7}
72	2.67×10^{7}	5.07×10^{7}	2.95×10^{7}	7.73×10^{7}	2.58×10^{6}	1.85×10^{7}
68	2.76×10^{6}	6.21×10^{7}	1.78×10^{7}	1.41×10^{8}	1.91×10^{6}	8.01×10^{6}
64	1.29×10^{7}	6.07×10^{7}	5.25×10^{7}	1.76×10^{8}	8.04×10^{6}	3.24×10^{6}
60	4.60×10^{6}	4.36×10^{7}	7.14×10^{6}	1.43×10^{8}	2.82×10^{6}	3.37×10^{4}

In molecule **2**, the role of J and D on k_{ISC} in all three pathways, (a),(b) and (c) are the same as that already observed for **1**. The relevant results for **2** are also provided in Table S14.

Fig S13. Effect of Duschinsky rotation matrix (J) and displacement vectors (D) on k_{ISC}^{DSO} of (a) $S_{CT-Naph} \leadsto T_{CT-Phen}$ and (b) $S_{CT-Naph} \leadsto T_{CT-Naph}$ channels of molecule 1.

Fig S14. Effect of Duschinsky rotation matrix (J) and displacement vectors (D) on k_{ISC}^{DSO} of (a) $S_{CT-Naph} \leadsto T_{CT-Biph}$, b) $S_{CT-Naph} \leadsto T_{LE-Naph}$ and (c) $S_{CT-Naph} \leadsto T_{CT-Naph}$ channels of molecule 2.

S10 Effect of basis set on the spin-orbit coupling matrix elements

We have also computed the SOC with the def2-SVP basis set on the first excited singlet state geometry of 10-(naphthalen-1-yl)-3,7-diphenyl-10H-phenoxazine. No significant changes have been observed. The computed SOC values among $S_{CT-Naph} \longrightarrow T_{CT-Naph}$, $S_{CT-Naph} \longrightarrow T_{CT-Phen}$ and $S_{CT-Naph} \longrightarrow T_{LE-Naph}$ with def2-TZVP and def2-SVP basis sets are given in Table S12.

Table S15. Spin-orbit coupling in cm⁻¹ between $S_{CT-Naph} \leadsto T_{CT-Naph}$, $S_{CT-Naph} \leadsto T_{CT-Phen}$ and $S_{CT-Naph} \leadsto T_{LE-Naph}$ transitions in two different basis set of molecule **1**.

basis set	$S_{CT-Naph} \leadsto T_{CT-Naph}$	$S_{CT-Naph} \leadsto T_{CT-Naph}$	$S_{CT-Naph} \leadsto T_{CT-Naph}$
def2-SVP	0.11	1.54	0.87
def2-TZVP	0.14	1.59	0.91

S11 Effect of solvent polarity on the energetic ordering of the excited states

We have computed the excitation energies of the singlet and triplet excited states (CT-Nap, LE-Naph and CT-Phen) in toluene, using both the equilibrium geometries of S_0 and $S_{CT-Naph}$ of 10-(naphthalen-1-yl)-3,7-diphenyl-10H-phenoxazine. Also in this case, the positions of the excited singlet and triplet states on the energetic scale remain practically unchanged (Fig S15) with respect to the corresponding results obtained with DMAc solvent, indicating that the solvent polarity hardly has any effect on the absorption and emission wavelengths. Although ISC rate is largely unaffected in different solvents, ISC quantum yield may be influenced by the solvent polarity.

Fig S15. The energetic ordering of the excited singlet and triplet states in (a) DMAc and (b) toluene solvents of molecule 10-(naphthalen-1-yl)-3,7-diphenyl-10H-phenoxazine computed at the NEVPT2 level of theory.

S12 Nature of the mode-specific NACMEs

The normal mode specific nonadiabatic coupling matrix element (NACME) between two singlets or two triplets can be expressed as,

$$\langle \mathbf{S}/\mathbf{T}_{\mathrm{CT/LE}} | \frac{\partial}{\partial \mathbf{Q}_{k}} | \mathbf{S}/\mathbf{T}_{\mathrm{CT/LE}} \rangle = \frac{\langle \mathbf{S}/\mathbf{T}_{\mathrm{CT/LE}} | \frac{\partial V}{\partial \mathbf{Q}_{k}} | \mathbf{S}/\mathbf{T}_{\mathrm{CT/LE}} \rangle}{E_{\mathbf{S}/\mathbf{T}_{\mathrm{CT/LE}}} - E_{\mathbf{S}/\mathbf{T}_{\mathrm{CT/LE}}}}$$
(S3)

Here, V and \mathbf{Q}_k are the nulceus-electron attraction operator and the normal coordinate of the *k*-th mode, respectively. The transformation of the NAC from Cartesian space to the normal mode specific coordinate has been done following Refs. 11,12. The energies of the singlet or triplet states having CT/LE character is defined by $E_{S/T_{CT/LE}}$. These nonadiabatic coupling matrix element depends upon two factors: the derivative term in the numerator and the energy gap between the two singlet or two triplet states as found in the denominator of eqn (S3). We note that the dependence of the NAC on the factor appearing in the numerator is not straightforward. For our purposes, we have computed the NAC in the singlet manifold between $S_{CT-Phen/CT-Biph}$ and $S_{CT-Naph}$ states for the calculation of k_{IC} at all the dihedral angles down to 60° while in the triplet manifold, k_{IC} between $T_{LE-Naph}$ and $T_{CT-Naph}$ has been calculated within the range of 90° – 72°. From Fig 1c (main manuscript) and Fig S6c, it is evident that the energy gap between $T_{LE-Naph}$ and $T_{CT-Naph}$ decreases due to the change in the dihedral angle from 90° to 72° and this is true for both molecules 1 and 2. Interestingly, this decreasing trend helps increase the magnitude of the norm of the NAC vector and mode-specific NACMEs, and the corresponding findings are reflected in the data in Tables 2 (main manuscript) and S_{CT-Naph} with dihedral angle for both 1 and 2 are given in Figs S18 and S19, respectively.

Fig S16. Mode specific NACMEs between the $T_{LE-Naph}$ and $T_{CT-Naph}$ of molecule 1.

Fig S17. Mode specific NACME among $\mathsf{T}_{LE-Naph}$ and $\mathsf{T}_{CT-Naph}$ states of molecule 2.

Fig S18. Mode specific NACMEs between the $S_{CT-Phen}$ and $S_{CT-Naph}$ of molecule 1.

Fig S19. Mode specific NACME among $S_{\rm CT-Biph}$ and $S_{\rm CT-Naph}$ states of molecule 2.

			molecule-1			
ω_{S_0}	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}} \ (\phi = 90.2^{\circ}) \end{aligned}$	$\omega_{ m S_{CT-Phen}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Phen}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE}-\mathrm{Naph}}}$	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}}\ (\phi=88^\circ) \end{aligned}$
14.98	18.18	15.65	15.53	21.48	21.65	18.32
17.49	22.85	23.15	21.50	23.26	23.80	22.81
21.40	31.93	30.94	22.80	27.57	27.01	31.09
38.50	38.20	34.67	33.20	38.86	39.18	38.10
46.64	39.66	45.53	45.15	44.43	44.20	39.38
48.04	49.43	51.49	49.70	48.33	47.93	49.32
56.31	55.32	54.47	54.31	61.27	61.20	54.68
60.00	68.55	64.22	59.62	63.29	63.00	68.13
71.09	88.62	89.92	86.07	85.76	85.72	88.73
95.46	95.63	105.29	110.17	93.19	93.42	95.48
137.90	127.26	126.58	115.43	131.61	131.56	127.38
140.14	136.99	139.97	139.79	140.95	140.28	136.81
159.31	161.44	161.55	153.23	154.52	154.36	161.42
166.49	169.01	173.61	175.21	172.25	172.22	168.95
178.95	178.72	177.06	177.82	177.37	176.90	178.64
204.05	205.27	210.08	196.91	202.15	202.13	205.28
229.79	223.34	213.75	210.80	227.50	227.85	222.70
248.69	241.50	257.74	232.40	230.33	230.55	241.54
258.66	270.17	268.53	258.45	253.19	253.49	270.08
284.55	286.54	279.71	261.56	282.10	282.30	286.44
292.66	293.34	295.36	292.23	285.40	285.66	293.18
295.08	297.10	301.41	297.91	295.87	295.50	296.91
336.82	316.68	317.16	318.82	316.93	316.69	316.50
372.52	368.34	373.08	366.82	364.82	364.62	368.20
389.67	388.89	384.01	385.39	382.99	382.91	388.73
417.23	409.20	415.64	391.93	393.44	393.50	409.07
417.49	414.52	417.11	415.23	416.70	416.63	414.46
426.30	415.10	417.53	416.07	417.10	417.05	415.08
436.47	422.21	425.52	425.82	422.61	422.80	422.22
453.76	458.32	438.35	439.76	452.09	452.18	458.28
458.70	464.86	444.55	447.88	456.23	456.33	464.31
478.44	482.81	469.63	455.81	460.65	460.97	482.59
482.30	482.97	479.85	479.90	475.60	475.52	482.87
483.10	503.48	483.01	481.20	481.19	481.38	503.34
489.15	517.60	490.04	492.66	485.68	485.65	517.55

S13 Frequencies of all geometries of molecule 1 computed at (B3LYP/6-311G(d,p)) level of theory

molecule-1						
ω_{S_0}	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}} \ (\phi = 90.2^{\circ}) \end{aligned}$	$\omega_{\mathrm{S}_{\mathrm{CT-Phen}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Phen}}}$	$\omega_{\mathrm{T}_{\mathrm{CT}-\mathrm{Naph}}}$	$\omega_{\mathrm{T_{LE-Naph}}}$	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}}\ (\phi=88^\circ) \end{aligned}$
522.05	520.20	503.94	502.01	505.84	505.75	520.19
525.23	522.03	523.25	526.22	510.77	510.85	521.97
542.69	524.16	529.62	530.60	519.91	519.90	524.19
551.47	542.85	543.68	544.61	532.59	532.41	542.77
556.67	579.20	570.66	552.34	542.85	542.78	579.06
601.68	582.45	572.28	564.62	564.64	564.59	582.48
621.26	612.67	594.89	595.76	605.88	605.84	612.55
623.59	615.19	607.38	609.27	609.32	609.27	615.19
627.41	626.46	621.27	614.32	624.55	624.45	626.34
630.40	630.77	622.77	622.59	628.56	628.53	630.68
637.92	635.36	631.25	625.66	633.88	633.84	635.24
640.51	639.78	635.29	629.10	640.08	639.99	639.72
666.74	649.56	654.73	636.11	642.00	641.99	649.58
675.41	664.09	657.74	650.85	664.68	664.69	664.04
689.67	680.70	664.20	668.17	673.65	673.64	680.65
702.19	685.77	688.26	670.81	680.93	681.49	686.01
713.06	710.08	693.90	686.70	706.66	706.80	709.97
713.13	710.34	694.09	702.48	712.32	712.57	710.32
720.68	718.74	714.41	703.90	712.77	712.75	718.77
728.04	721.51	716.18	709.79	714.13	714.25	721.33
745.29	725.03	737.57	714.50	723.80	723.70	724.98
751.71	740.17	748.43	733.15	728.27	728.30	740.00
775.15	747.03	754.67	750.15	740.29	740.57	746.99
777.08	752.89	757.89	755.70	745.36	745.38	752.99
793.64	757.22	783.67	773.22	760.48	760.75	757.47
794.69	778.10	788.40	788.45	774.07	774.08	778.06
806.03	780.42	790.88	791.11	777.78	777.83	780.39
819.29	787.32	794.73	796.22	786.89	786.91	787.29
827.52	798.44	804.74	804.90	797.64	797.70	798.44
828.89	813.39	813.02	814.61	820.04	820.56	813.39
858.22	837.57	829.76	816.44	830.55	830.34	837.76
858.69	843.51	831.07	834.01	831.50	831.43	843.48
870.22	844.67	863.63	852.05	855.73	855.94	844.43
879.16	858.49	869.91	852.88	858.45	858.75	858.31
882.02	858.75	874.78	855.83	858.52	858.83	858.68
882.60	861.77	876.07	874.84	861.68	861.72	861.72
917.90	891.64	893.65	886.72	879.80	880.24	891.26
933.47	893.43	894.47	900.98	882.89	883.17	893.09
933.99	904.27	901.18	924.66	904.45	904.47	904.51
936.24	913.68	930.65	929.96	913.65	913.69	913.59

molecule-1						
ω_{S_0}	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}} \ (\phi = 90.2^{\circ}) \end{aligned}$	$\omega_{ m S_{CT-Phen}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Phen}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}} \ (\phi = 88^\circ) \end{aligned}$
943.77	916.98	932.11	932.49	931.37	930.96	917.05
950.88	928.36	939.20	938.71	935.66	935.67	928.39
950.99	944.31	949.37	946.36	937.62	937.87	944.18
960.18	945.63	949.86	961.39	938.13	938.40	945.49
980.42	958.84	976.36	964.39	950.03	949.81	958.74
989.13	987.39	976.52	964.98	953.71	953.75	987.51
989.46	988.51	977.88	976.74	959.87	959.54	988.28
1000.8	994.12	988.96	979.03	961.26	960.50	994.00
1008.21	994.41	989.09	988.86	990.28	990.42	994.40
1008.29	1013.42	990.52	990.26	990.55	990.75	1013.36
1010.69	1013.64	996.51	1001.57	1004.86	1004.55	1013.58
1012.31	1016.03	1000.57	1007.34	1009.92	1010.02	1015.99
1012.71	1016.06	1009.60	1010.55	1010.28	1010.40	1016.01
1036.92	1021.05	1019.71	1011.30	1012.66	1012.69	1021.05
1041.04	1038.73	1022.69	1029.14	1013.02	1013.04	1038.57
1044.81	1041.24	1041.12	1036.38	1040.33	1040.34	1041.03
1059.70	1052.72	1041.38	1038.45	1044.68	1044.68	1052.73
1067.51	1061.26	1044.72	1055.99	1057.32	1057.23	1061.06
1067.92	1062.43	1061.97	1060.65	1065.59	1065.65	1062.24
1096.56	1076.27	1093.12	1092.20	1067.69	1067.66	1076.27
1101.93	1100.28	1104.27	1097.10	1068.72	1068.93	1100.38
1102.21	1106.70	1104.63	1103.93	1102.88	1102.75	1106.59
1136.04	1107.08	1155.14	1141.39	1103.06	1103.13	1107.02
1158.45	1150.04	1165.97	1149.65	1138.61	1138.58	1150.20
1167.58	1154.70	1171.84	1164.28	1139.91	1140.03	1154.94
1176.51	1162.44	1172.06	1168.83	1150.42	1150.55	1162.50
1176.80	1173.23	1174.23	1170.77	1165.80	1165.47	1173.26
1176.92	1179.90	1174.62	1176.81	1177.02	1176.98	1179.94
1188.41	1180.54	1181.21	1180.51	1177.68	1177.86	1180.36
1190.74	1196.10	1186.64	1184.99	1192.53	1192.72	1196.12
1200.90	1200.48	1195.07	1193.68	1197.02	1196.95	1200.45
1202.42	1204.83	1210.43	1202.02	1201.30	1201.25	1204.74
1212.92	1206.27	1212.69	1209.70	1202.82	1202.91	1206.17
1231.32	1207.65	1227.73	1231.25	1204.61	1204.60	1207.42
1241.30	1224.59	1237.64	1237.82	1219.35	1219.43	1224.53
1256.96	1255.86	1243.86	1245.58	1254.47	1254.68	1255.33
1277.88	1270.65	1281.83	1258.08	1264.07	1263.93	1270.39
1283.90	1285.67	1282.43	1279.49	1271.62	1271.85	1285.64

molecule-1						
ω_{S_0}	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}} \ (\phi = 90.2^{\circ}) \end{aligned}$	$\omega_{\mathrm{S}_{\mathrm{CT-Phen}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Phen}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}}\ (\phi=88^\circ) \end{aligned}$
1290.63	1292.38	1287.35	1286.42	1286.68	1286.85	1292.30
1302.25	1300.18	1303.96	1295.20	1294.50	1294.38	1300.09
1313.13	1302.85	1318.68	1315.94	1302.73	1302.68	1302.85
1315.53	1316.81	1328.93	1322.79	1311.84	1312.07	1316.72
1324.04	1326.63	1332.80	1333.60	1317.97	1318.01	1326.63
1333.25	1329.48	1339.01	1341.65	1321.60	1321.60	1329.44
1339.28	1351.19	1353.57	1348.83	1325.24	1325.33	1351.16
1351.91	1353.06	1354.92	1357.64	1331.19	1331.30	1352.92
1361.19	1358.01	1373.40	1371.10	1340.19	1340.25	1358.14
1361.26	1359.33	1375.77	1374.10	1345.24	1345.17	1359.33
1367.61	1367.13	1380.98	1387.68	1358.15	1358.01	1367.18
1390.89	1371.85	1414.76	1391.33	1360.98	1360.91	1371.85
1419.67	1391.11	1426.17	1398.55	1411.43	1411.20	1391.06
1431.74	1425.18	1435.59	1420.50	1428.18	1428.28	1425.24
1454.29	1441.98	1446.64	1448.67	1432.31	1432.33	1441.91
1468.01	1447.11	1459.62	1462.26	1437.48	1437.52	1447.24
1477.64	1461.19	1478.07	1469.55	1453.80	1453.89	1461.17
1484.12	1468.94	1486.49	1471.77	1464.38	1464.64	1468.81
1495.18	1475.81	1488.41	1482.30	1472.25	1472.00	1475.74
1510.94	1480.40	1492.52	1490.18	1477.89	1477.92	1480.37
1521.06	1492.15	1498.40	1494.85	1485.76	1485.80	1492.11
1536.81	1515.16	1503.75	1505.48	1504.69	1504.81	1515.13
1542.02	1529.99	1513.75	1530.32	1515.88	1515.92	1529.95
1551.52	1532.85	1519.77	1534.92	1525.85	1525.98	1532.90
1582.13	1536.87	1532.00	1540.95	1533.32	1533.33	1536.84
1609.65	1539.23	1542.84	1543.08	1541.24	1541.27	1539.23
1610.55	1554.08	1573.88	1556.41	1563.68	1563.76	1554.02
1614.94	1597.79	1574.38	1592.03	1576.21	1576.18	1597.72
1628.81	1599.42	1592.97	1596.93	1608.49	1608.50	1599.44
1628.99	1613.20	1611.71	1609.35	1615.34	1615.32	1613.15
1635.69	1616.87	1629.92	1610.15	1623.34	1623.43	1616.84
1638.09	1617.91	1632.51	1634.32	1624.28	1624.30	1617.89
1640.41	1635.67	1639.57	1637.16	1637.47	1637.53	1635.65
1661.51	1638.62	1654.66	1651.32	1639.47	1639.47	1638.60
1668.33	1658.05	1830.03	1662.10	1659.89	1659.97	1658.00
3162.35	3140.82	3157.95	3154.86	3163.40	3163.54	3140.89
3162.39	3149.38	3158.41	3159.15	3163.82	3163.96	3149.42
3166.68	3152.15	3163.22	3163.76	3164.28	3164.21	3152.17
3167.78	3164.05	3163.35	3169.38	3169.40	3169.59	3164.11
3167.97	3165.26	3169.74	3169.49	3169.91	3169.83	3165.33

	molecule-1							
ω_{S_0}	$\omega_{ m S_{CT-Naph}}$	$\omega_{ m S_{CT-Phen}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Phen}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$	$\omega_{ m S_{CT-Naph}}$		
	$(\phi = 90.2^{\circ})$					$(\phi=88^\circ)$		
3170.24	3169.59	3174.32	3173.89	3169.99	3170.23	3169.58		
3175.57	3169.67	3177.90	3178.10	3171.98	3172.14	3169.60		
3176.84	3175.68	3180.17	3179.28	3178.12	3178.36	3175.54		
3177.08	3175.68	3180.88	3183.91	3178.65	3178.52	3175.70		
3181.52	3178.02	3184.78	3183.91	3181.30	3181.45	3178.06		
3181.75	3183.27	3185.34	3188.39	3183.34	3183.45	3183.13		
3183.24	3183.28	3189.79	3189.97	3183.79	3183.67	3183.29		
3185.71	3184.61	3190.33	3190.59	3184.88	3185.03	3184.68		
3185.92	3189.26	3190.67	3191.54	3189.94	3189.90	3189.13		
3188.30	3189.33	3191.06	3194.02	3190.35	3190.04	3189.36		
3190.59	3196.47	3199.03	3194.29	3192.34	3192.53	3196.45		
3190.66	3196.55	3200.68	3197.86	3192.64	3192.56	3196.50		
3192.26	3203.96	3200.94	3199.71	3193.97	3194.22	3203.98		
3192.55	3204.31	3201.47	3200.19	3195.45	3195.78	3204.35		
3195.54	3209.72	3203.52	3200.54	3196.34	3196.13	3209.48		
3199.53	3210.15	3204.19	3211.48	3198.03	3198.10	3210.02		
3206.06	3230.51	3214.19	3212.66	3211.96	3211.99	3230.40		
3206.50	3231.07	3214.95	3223.46	3222.43	3222.30	3230.95		

molecule-1							
$\omega_{ m S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{ m S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	
$(\phi=84^\circ)$	$(\phi=80^\circ)$	$(\phi = 76^{\circ})$	$(\phi = 72^{\circ})$	$(\phi = 68^{\circ})$	$(\phi = 64^{\circ})$	$(\phi = 60^{\circ})$	
19.45	19.74	20.41	22.59	23.41	22.57	20.68	
22.39	22.34	23.22	24.75	26.84	26.97	24.55	
30.14	30.52	31.56	32.34	33.34	33.31	32.46	
37.92	38.16	38.91	40.66	42.05	42.21	42.23	
40.73	41.59	43.04	45.22	47.54	48.82	49.20	
49.23	49.42	49.55	49.99	50.24	50.29	50.47	
55.37	55.92	57.88	61.50	63.71	66.83	69.88	
67.30	67.50	68.73	70.33	71.60	71.87	72.00	
89.09	89.75	91.48	93.16	94.35	94.72	94.42	
95.40	95.67	96.00	97.08	98.87	100.77	102.32	
128.12	128.63	129.63	131.98	134.70	136.90	137.58	
136.78	137.32	139.41	141.76	144.81	147.58	149.66	
161.80	162.43	164.14	166.32	168.16	169.25	169.75	

			molecule-1			
$\omega_{ m S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{ m S_{CT-Naph}}$				
$(\phi = 84^{\circ})$	$(\phi = 80^\circ)$	$(\phi = 76^{\circ})$	$(\phi = 72^{\circ})$	$(\phi = 68^\circ)$	$(\phi = 64^{\circ})$	$(\phi = 60^\circ)$
169.17	169.55	170.54	172.69	177.44	184.36	190.75
179.36	180.51	182.53	187.90	195.15	204.92	209.13
205.31	205.38	205.61	206.13	206.87	208.38	217.35
223.38	223.47	223.82	225.42	224.83	224.04	226.77
241.61	240.94	240.56	240.75	241.23	242.12	242.36
270.10	270.25	270.43	270.66	270.72	270.55	270.36
286.56	286.61	286.86	288.26	289.29	290.72	292.10
293.40	293.06	292.70	293.00	292.97	293.17	293.49
296.70	296.71	297.07	297.73	298.23	298.61	299.01
316.64	316.57	317.04	318.17	319.23	321.20	323.61
368.29	368.04	368.18	369.17	370.11	371.45	373.96
388.52	388.28	388.23	388.38	388.62	389.42	390.21
408.70	407.96	407.43	406.90	406.43	406.16	405.96
414.53	414.54	414.64	414.80	414.96	414.58	414.62
414.73	414.64	414.79	415.13	415.11	414.89	414.79
422.28	422.62	423.09	423.66	424.49	425.46	426.27
458.23	458.15	458.64	459.02	459.34	459.81	460.63
464.62	464.53	465.19	466.37	466.56	468.34	471.27
482.72	482.82	483.01	483.52	483.83	483.94	484.08
482.88	482.99	483.51	484.34	485.14	486.64	490.40
502.75	501.88	500.76	499.75	499.01	498.73	498.71
517.46	517.38	517.35	517.39	517.42	517.33	517.25
520.55	520.63	520.67	521.16	521.70	522.63	523.83
521.87	521.84	522.41	523.42	523.87	524.04	524.04
524.18	524.14	524.23	524.55	525.78	527.68	529.94
542.69	542.78	542.87	543.17	543.33	543.34	543.34
578.36	577.25	575.86	574.25	572.52	570.93	569.08
582.78	583.15	583.77	584.68	585.64	586.74	587.92
612.25	611.78	611.23	610.87	610.52	610.29	609.95
615.15	615.06	615.10	615.13	615.14	615.18	615.26
626.42	626.25	626.05	625.93	625.51	625.27	625.51
630.65	630.73	630.80	630.90	630.93	630.88	630.83
635.10	634.80	634.53	634.36	634.18	634.22	634.50
639.75	639.67	639.59	639.55	639.45	639.48	639.69
649.48	649.21	649.07	648.83	648.40	648.10	647.84
664.01	664.05	664.14	664.31	664.44	664.54	664.64

molecule-1						
$\omega_{\rm S_{CT-Naph}}$						
$(\phi = 84^{\circ})$	$(\phi = 80^{\circ})$	$(\phi = 76^{\circ})$	$(\phi = 72^{\circ})$	$(\phi = 68^{\circ})$	$(\phi = 6\hat{4}^\circ)$	$(\phi = 60^{\circ})$
680.62	680.52	680.46	680.46	680.33	680.25	680.16
686.88	687.48	687.87	689.66	692.18	696.11	700.32
709.89	709.88	709.99	710.18	710.21	709.74	709.62
709.99	709.97	710.04	710.27	710.39	710.25	710.16
719.12	719.05	718.95	718.35	717.19	716.35	716.20
721.60	721.60	721.49	722.91	724.21	724.78	724.90
724.95	725.01	725.14	725.48	726.50	729.47	733.16
739.74	739.53	739.58	739.28	738.50	738.22	738.22
746.94	746.84	746.76	746.65	746.47	746.31	746.10
753.46	754.14	754.88	756.01	757.83	760.73	764.31
758.66	759.64	760.90	764.35	768.88	775.03	776.64
778.02	777.87	777.71	777.65	777.51	777.42	779.31
780.31	780.19	780.08	779.93	779.74	779.52	781.98
787.28	787.25	787.32	787.57	787.83	788.33	789.18
798.47	798.44	798.50	798.61	798.74	798.97	799.19
813.73	813.84	814.18	815.72	817.93	820.95	823.87
838.39	838.86	839.47	839.62	838.62	837.59	836.75
843.12	841.81	841.35	841.01	841.80	843.27	845.21
843.98	843.33	843.09	842.62	844.07	847.70	852.09
858.01	857.95	858.12	858.38	858.50	857.85	857.51
858.30	858.32	858.46	858.64	858.65	858.59	858.48
861.81	862.00	862.37	863.05	863.68	864.41	865.13
890.30	889.58	889.08	888.46	886.28	883.12	879.29
892.18	891.37	890.90	890.49	890.38	889.22	888.36
905.12	905.55	906.05	907.37	908.79	909.70	910.04
913.15	912.63	912.25	912.27	912.88	915.03	918.75
917.55	918.31	919.19	920.09	920.90	921.59	922.13
928.74	929.31	930.14	931.24	932.29	933.44	934.82
943.86	943.70	943.70	943.84	943.89	943.32	942.82
945.13	945.09	945.17	945.31	945.12	944.43	943.97
958.66	958.80	958.97	959.13	959.21	959.25	959.19
987.08	985.20	984.03	981.99	980.38	978.53	976.55
987.70	987.09	986.63	985.64	984.88	985.59	986.67
993.77	993.69	993.79	993.89	993.79	993.24	992.96
994.10	993.99	993.99	994.01	993.97	993.82	993.65
1013.31	1013.39	1013.42	1013.46	1013.49	1013.44	1013.33
1013.53	1013.61	1013.63	1013.68	1013.68	1013.62	1013.55
1015.87	1015.77	1015.71	1015.60	1015.24	1014.74	1014.34

molecule-1						
$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{ m S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{ m S_{CT-Naph}}$
$(\phi = 8\dot{4}^\circ)$	$(\phi = 8\dot{0}^{\circ})$	$(\phi = 76^{\circ})$	$(\phi = 72^{\circ})$	$(\phi = 6\dot{8}^\circ)$	$(\phi = 6\dot{4}^\circ)$	$(\phi = 60^{\circ})$
1015.89	1015.88	1015.79	1015.64	1015.54	1015.31	1015.08
1021.33	1021.60	1021.98	1022.63	1023.39	1024.24	1025.02
1038.48	1038.85	1039.22	1039.65	1039.98	1040.26	1040.58
1040.90	1041.38	1041.87	1042.44	1042.91	1043.31	1043.72
1053.14	1053.61	1054.15	1055.05	1056.10	1057.34	1058.43
1060.92	1061.27	1061.72	1062.20	1062.66	1062.98	1063.29
1062.16	1062.51	1062.95	1063.46	1064.04	1064.57	1065.21
1076.84	1077.27	1077.44	1078.63	1080.16	1082.45	1084.73
1100.66	1100.91	1101.21	1101.95	1103.18	1104.87	1106.27
1106.43	1106.41	1106.37	1106.66	1106.96	1106.68	1106.50
1106.66	1106.65	1106.83	1107.04	1107.22	1107.30	1107.04
1150.58	1151.03	1151.87	1153.09	1154.43	1156.14	1158.21
1155.51	1155.89	1156.29	1157.14	1158.05	1159.51	1161.23
1162.65	1162.72	1162.80	1163.08	1163.53	1164.36	1165.49
1173.74	1174.16	1174.60	1175.68	1176.86	1178.67	1179.24
1179.96	1179.85	1179.71	1179.68	1179.69	1179.74	1179.66
1180.10	1179.99	1179.85	1179.77	1179.84	1179.94	1181.17
1196.68	1197.15	1197.75	1199.03	1200.12	1201.10	1201.70
1200.62	1201.15	1201.90	1202.95	1204.10	1204.69	1204.31
1204.50	1204.61	1205.01	1205.71	1206.32	1206.67	1207.09
1206.06	1206.18	1206.58	1207.30	1208.35	1209.95	1212.61
1207.41	1208.13	1208.87	1210.19	1211.29	1212.75	1214.51
1224.65	1225.04	1225.41	1225.94	1226.61	1227.55	1228.54
1254.84	1255.80	1256.70	1257.63	1258.17	1258.55	1258.84
1271.06	1270.99	1270.69	1272.05	1273.46	1275.86	1278.02
1285.71	1285.99	1286.45	1287.22	1288.19	1289.38	1290.87
1292.43	1293.07	1293.95	1295.05	1295.86	1296.48	1296.76
1300.15	1300.30	1300.54	1301.15	1301.66	1302.37	1303.90
1302.85	1302.99	1303.25	1303.69	1304.13	1304.63	1305.24
1316.62	1316.66	1316.59	1316.44	1316.05	1315.49	1314.77
1326.67	1326.72	1326.82	1327.02	1327.22	1327.51	1327.90
1329.50	1329.60	1329.70	1329.85	1329.91	1330.01	1330.27
1351.23	1351.55	1351.65	1351.64	1351.51	1351.15	1350.64
1352.44	1352.07	1352.30	1352.90	1353.50	1353.78	1353.95
1358.80	1358.78	1358.50	1358.29	1358.22	1358.16	1357.99
1359.55	1360.65	1361.93	1362.98	1363.70	1364.14	1364.51
1367.52	1368.51	1370.25	1372.70	1375.23	1377.47	1379.37

molecule-1						
$\omega_{ m S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{ m S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$	$\omega_{\rm S_{CT-Naph}}$
$(\phi = 8\dot{4}^\circ)$	$(\phi = 80^{\circ})$	$(\phi = 76^{\circ})$	$(\phi = 72^{\circ})$	$(\phi = 68^{\circ})$	$(\phi = 6\dot{4}^\circ)$	$(\phi = 60^{\circ})$
1372.11	1372.90	1374.10	1375.69	1377.82	1380.71	1383.72
1390.94	1390.83	1390.64	1390.37	1390.17	1390.12	1390.36
1425.61	1426.03	1426.55	1427.49	1428.76	1430.30	1431.51
1441.91	1442.06	1442.27	1442.67	1443.06	1443.53	1444.17
1447.56	1447.82	1448.16	1448.70	1449.38	1450.46	1451.84
1461.23	1461.25	1461.29	1461.40	1461.43	1461.51	1461.63
1469.46	1469.67	1469.72	1471.25	1473.05	1475.84	1477.98
1475.81	1476.18	1476.66	1477.25	1477.76	1478.20	1479.21
1480.37	1480.39	1480.48	1480.79	1481.24	1482.01	1483.44
1492.09	1492.05	1492.03	1492.09	1492.02	1491.89	1491.77
1515.19	1515.35	1515.61	1516.02	1516.41	1516.75	1517.24
1529.84	1529.84	1529.88	1529.98	1530.02	1529.88	1529.60
1533.42	1534.15	1535.05	1536.29	1537.28	1537.47	1537.64
1536.79	1536.89	1537.04	1537.27	1537.88	1539.10	1539.58
1539.39	1539.52	1539.61	1539.92	1540.32	1541.33	1542.98
1553.70	1553.18	1552.53	1551.83	1550.98	1550.23	1549.78
1597.47	1597.10	1596.55	1595.84	1594.96	1594.10	1593.28
1599.37	1599.17	1598.95	1598.79	1598.60	1598.37	1598.00
1613.04	1612.93	1612.70	1612.39	1611.88	1611.17	1610.28
1616.80	1616.71	1616.59	1616.48	1616.38	1616.16	1615.85
1617.78	1617.56	1617.24	1616.92	1616.61	1616.35	1616.13
1635.61	1635.59	1635.57	1635.52	1635.43	1635.25	1634.99
1638.56	1638.51	1638.47	1638.40	1638.33	1638.18	1637.96
1657.87	1657.63	1657.33	1657.05	1656.60	1656.10	1655.71
3141.00	3141.07	3141.19	3141.47	3141.87	3142.26	3142.56
3149.54	3149.72	3150.00	3150.37	3150.90	3151.45	3151.99
3152.23	3152.31	3152.53	3152.79	3153.19	3153.61	3153.95
3164.23	3164.35	3164.56	3164.91	3165.40	3165.89	3166.35
3165.42	3165.54	3165.87	3166.24	3166.84	3167.41	3167.79
3169.53	3169.60	3169.60	3169.58	3169.53	3169.41	3169.25
3169.56	3169.61	3169.61	3169.62	3169.54	3169.47	3169.46
3175.47	3175.49	3175.50	3175.62	3175.58	3175.53	3175.47
3175.62	3175.86	3175.95	3175.96	3175.92	3175.70	3175.56
3178.07	3178.14	3178.47	3178.84	3179.51	3180.11	3180.29

molecule-1							
$\omega_{S_{CT-Naph}}$ $(\phi = 84^{\circ})$	$\omega_{S_{CT-Naph}}$ $(\phi = 80^{\circ})$	$\omega_{S_{CT-Naph}}$ $(\phi = 76^{\circ})$	$\omega_{S_{CT-Naph}}$ $(\phi = 72^{\circ})$	$\omega_{S_{CT-Naph}}$ $(\phi = 68^{\circ})$	$\omega_{S_{CT-Naph}}$ $(\phi = 64^{\circ})$	$\omega_{S_{CT-Naph}}$ $(\phi = 60^{\circ})$	
3183.05	3183.06	3183.02	$(\psi = 72^{\circ})$ 3183.19	3183.24	3183.22	3183.09	
3183.16	3183.48	3183.61	3183.64	3183.61	3183.35	3183.24	
3184.82	3184.77	3184.80	3185.03	3185.27	3185.47	3185.46	
3189.11	3189.10	3189.06	3189.18	3189.23	3189.22	3189.21	
3189.24	3189.46	3189.56	3189.60	3189.62	3189.42	3189.22	
3196.41	3196.46	3196.44	3196.46	3196.47	3196.44	3196.34	
3196.47	3196.51	3196.50	3196.52	3196.54	3196.49	3196.45	
3203.71	3203.63	3203.60	3203.39	3203.32	3203.09	3202.59	
3204.27	3203.98	3203.83	3203.91	3203.87	3203.67	3203.15	
3209.12	3209.15	3209.34	3209.34	3209.36	3209.15	3208.57	
3209.72	3209.58	3209.69	3209.76	3209.73	3209.73	3209.83	
3230.26	3230.34	3230.45	3230.09	3229.28	3228.19	3226.19	
3230.79	3230.99	3231.47	3231.56	3232.17	3232.76	3232.21	

molecule-2							
ω _{S0}	$\omega_{ m S_{CT-Naph}} \ (\phi=89.53^\circ)$	$\omega_{ m S_{CT-Biph}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$		
10.52	12.76	12.76	12.13	13.27	13.20		
16.48	16.17	16.17	14.98	18.09	18.13		
17.12	18.43	18.43	19.85	18.71	18.49		
18.41	22.24	22.25	22.21	19.40	19.36		
23.43	22.95	22.94	23.96	27.01	26.97		
28.16	27.99	27.99	27.82	28.38	28.12		
41.01	36.87	36.86	39.99	41.90	41.82		
42.62	48.43	48.43	45.23	49.03	49.04		
45.47	50.55	50.54	53.34	49.65	49.66		
51.55	56.92	56.91	56.81	51.89	51.83		
73.52	72.91	72.91	67.19	73.46	73.49		
78.59	78.92	78.92	73.53	78.76	78.79		
78.95	84.49	84.49	79.52	82.47	82.50		
85.77	85.94	85.94	89.25	89.08	89.14		
104.73	109.46	109.46	107.16	109.14	109.15		
121.25	118.26	118.25	124.62	119.09	119.12		
130.96	127.39	127.39	130.05	127.11	127.09		
133.23	132.01	132.01	135.66	131.38	131.40		
145.04	142.92	142.92	137.09	145.79	145.81		
162.61	162.09	162.08	167.21	161.53	161.55		
178.52	177.87	177.89	175.53	174.29	174.21		
187.72	190.19	190.19	178.10	191.55	191.52		
202.61	197.14	197.14	204.01	195.57	195.56		
215.24	213.79	213.80	213.98	215.46	215.44		
229.44	234.52	234.52	226.19	231.56	231.56		
260.13	257.58	257.59	256.24	247.78	247.72		
274.83	274.21	274.19	261.66	261.19	261.15		
289.28	279.18	279.16	281.64	278.73	278.75		
299.57	297.29	297.30	294.22	297.35	297.33		

S14 Frequencies of all geometries of molecule 2 computed at (B3LYP/6-311G(d,p)) level of theory

molecule-2						
ω_{S_0}	$\omega_{ m S_{CT-Naph}} \ (\phi=89.53^\circ)$	$\omega_{\mathrm{S}_{\mathrm{CT-Biph}}}$	ω _{T_{CT-Biph}}	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$	
316.98	321.26	321.26	306.94	316.99	317.01	
339.92	338.57	338.57	321.56	337.93	337.92	
345.25	346.52	346.52	346.67	343.34	343.36	
357.34	362.89	362.89	356.50	354.27	354.25	
385.74	371.81	371.81	376.94	365.18	365.20	
400.99	388.78	388.77	393.17	385.99	386.01	
411.78	403.14	403.14	405.73	403.52	403.54	
415.81	414.34	414.35	415.92	415.34	415.41	
416.57	414.88	414.88	416.72	415.59	415.64	
422.51	419.82	419.82	421.00	417.70	417.71	
423.32	420.91	420.91	421.47	421.75	421.80	
429.83	422.80	422.80	424.39	422.96	423.11	
442.11	430.52	430.52	424.79	427.46	427.46	
454.56	454.99	454.98	441.28	452.17	452.10	
456.82	462.00	462.00	447.51	457.51	457.42	
463.29	468.58	468.57	454.96	463.78	463.73	
482.74	500.86	500.86	472.06	465.58	465.56	
483.27	503.63	503.62	480.53	480.59	480.51	
497.50	504.91	504.91	495.93	492.53	492.52	
507.71	511.74	511.75	501.80	498.82	498.80	
515.36	520.61	520.61	512.23	510.27	510.18	
526.31	525.04	525.05	526.24	513.61	513.58	
534.52	526.89	526.89	528.32	519.03	518.98	
550.89	542.10	542.10	534.25	531.32	531.28	
562.75	564.41	564.41	554.38	536.74	536.72	
568.49	568.83	568.84	559.66	566.02	566.01	
571.07	581.78	581.77	568.75	570.11	570.10	
601.91	583.39	583.39	573.50	570.89	570.88	
622.93	613.21	613.21	596.66	606.24	606.25	
624.66	615.42	615.42	613.96	609.73	609.72	
627.65	628.07	628.07	620.40	625.69	625.70	
631.21	631.31	631.31	625.48	630.85	630.84	
632.63	632.97	632.97	628.22	632.20	632.21	
634.44	634.75	634.74	631.63	635.20	635.20	
653.37	643.81	643.81	639.03	636.32	636.30	
656.14	651.74	651.74	643.05	651.87	651.86	
656.71	655.59	655.59	649.26	655.79	655.79	

molecule-2						
ω_{S_0}	$\omega_{\mathrm{S}_{\mathrm{CT-Naph}}} \ (\phi=89.53^\circ)$	$\omega_{\mathrm{S}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$	
672.04	657.45	657.45	655.72	657.05	657.06	
689.36	679.71	679.71	668.04	673.45	673.44	
699.00	685.06	685.04	682.28	681.26	681.24	
701.68	694.43	694.43	689.97	697.07	697.05	
713.66	712.91	712.91	703.82	705.94	705.88	
713.96	713.27	713.27	709.08	713.57	713.58	
719.49	717.99	717.99	710.94	713.77	713.80	
730.60	720.50	720.50	713.58	714.44	714.37	
748.78	729.85	729.85	716.62	724.13	724.12	
749.21	739.45	739.45	746.36	731.34	731.32	
751.66	749.72	749.72	747.28	740.24	740.18	
765.70	750.28	750.28	750.84	748.66	748.66	
776.10	753.04	753.00	751.77	749.42	749.42	
783.05	757.65	757.63	766.45	759.22	759.29	
783.43	764.32	764.33	772.01	763.00	763.01	
793.64	775.81	775.81	782.57	776.55	776.52	
796.73	783.67	783.67	784.50	782.85	782.85	
806.83	784.39	784.39	789.57	783.62	783.63	
819.27	791.48	791.48	795.51	791.32	791.29	
824.15	798.64	798.64	805.45	797.95	797.94	
825.55	813.22	813.21	810.88	820.22	820.16	
852.12	837.34	837.34	817.26	826.96	826.81	
852.36	838.34	838.35	818.14	828.38	828.23	
859.40	839.33	839.34	830.42	852.24	852.32	
859.59	851.25	851.26	845.21	852.45	852.50	
859.82	852.05	852.06	849.95	855.80	855.83	
860.24	859.07	859.08	858.25	858.70	858.74	
872.38	859.82	859.82	859.65	859.52	859.63	
881.64	861.06	861.06	861.40	859.81	859.90	
884.48	864.76	864.76	877.34	860.96	860.92	
887.78	867.79	867.80	890.84	865.65	865.58	
918.40	894.12	894.12	904.70	884.89	884.85	
934.53	896.17	896.17	912.07	889.28	889.22	
937.48	903.60	903.61	927.48	905.04	905.03	
937.76	914.05	914.05	934.56	914.11	914.11	
943.99	917.03	917.04	938.03	931.14	931.29	

molecule-2						
ω_{S_0}	$\omega_{\rm S_{CT-Naph}}$ $(\phi = 89.53^{\circ})$	$\omega_{\mathrm{S}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT}-\mathrm{Biph}}}$	<i>ω</i> _{T_{CT-Naph}}	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$	
950.17	927.90	927.90	941.88	937.23	937.05	
950.50	940.28	940.28	951.97	938.04	938.19	
960.26	940.64	940.64	958.57	938.17	938.34	
980.38	958.13	958.13	963.72	949.91	950.11	
981.20	984.62	984.62	964.33	953.93	953.92	
981.37	984.90	984.90	973.75	959.41	959.45	
988.70	988.30	988.30	980.34	960.38	960.40	
989.46	989.19	989.19	982.01	982.16	982.35	
990.76	991.48	991.48	982.43	982.55	982.66	
990.96	991.54	991.54	989.74	989.29	989.57	
1000.86	993.85	993.85	991.23	989.86	990.11	
1009.79	994.01	994.01	991.97	990.96	991.21	
1009.89	1011.77	1011.77	997.06	991.42	991.65	
1010.70	1012.01	1012.01	1001.16	1004.98	1004.79	
1011.21	1012.02	1012.02	1002.30	1010.07	1010.30	
1011.45	1012.13	1012.13	1010.00	1010.14	1010.37	
1020.08	1020.13	1020.13	1011.03	1011.44	1011.37	
1020.22	1020.25	1020.25	1012.01	1011.76	1011.68	
1034.41	1021.05	1021.05	1018.48	1020.22	1020.21	
1037.03	1032.89	1032.90	1020.20	1020.30	1020.29	
1037.12	1035.02	1035.02	1033.76	1034.33	1034.29	
1054.59	1050.51	1050.51	1037.02	1037.13	1037.10	
1057.65	1053.66	1053.66	1049.54	1053.26	1053.22	
1061.38	1055.69	1055.69	1052.40	1057.68	1057.62	
1069.65	1065.46	1065.46	1060.10	1060.06	1060.00	
1070.19	1066.25	1066.25	1065.54	1066.57	1066.46	
1096.65	1076.07	1076.05	1093.98	1070.02	1069.97	
1102.20	1099.82	1099.83	1102.68	1070.87	1070.84	
1102.39	1103.44	1103.44	1102.74	1102.54	1102.56	
1136.36	1103.78	1103.78	1131.38	1102.84	1102.84	
1141.55	1146.19	1146.18	1144.23	1139.03	1138.97	
1142.17	1146.93	1146.92	1146.88	1140.19	1140.14	
1159.06	1150.70	1150.70	1162.88	1142.64	1142.69	
molecule-2						
----------------	---------------------------	--	--	--	--	
ω_{S_0}	$\omega_{ m S_{CT-Naph}}$	$\omega_{\mathrm{S}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$	
	$(\phi = 89.53^{\circ})$					
1167.54	1154.34	1154.36	1165.30	1143.24	1143.33	
1176.87	1161.99	1161.99	1169.43	1151.34	1151.28	
1177.03	1173.18	1173.18	1173.68	1165.86	1165.78	
1177.07	1178.00	1178.00	1177.29	1177.42	1177.37	
1188.57	1178.09	1178.09	1180.61	1177.42	1177.38	
1191.48	1195.91	1195.92	1188.72	1193.80	1193.74	
1200.35	1201.28	1201.28	1200.67	1198.29	1198.21	
1200.59	1201.77	1201.77	1200.90	1200.79	1200.75	
1208.49	1202.61	1202.67	1205.82	1201.22	1201.18	
1214.47	1207.22	1207.24	1214.84	1204.42	1204.39	
1218.79	1215.54	1215.54	1218.95	1211.55	1211.59	
1231.44	1218.92	1218.91	1233.52	1215.13	1215.21	
1241.57	1224.59	1224.57	1242.02	1223.28	1223.28	
1258.77	1256.92	1256.92	1249.01	1256.57	1256.56	
1278.13	1270.17	1270.18	1271.51	1262.88	1262.89	
1280.89	1286.42	1286.43	1279.29	1271.81	1271.83	
1283.66	1287.27	1287.28	1281.44	1282.75	1282.70	
1291.62	1290.36	1290.36	1284.37	1285.68	1285.61	
1298.74	1295.99	1296.00	1290.86	1294.14	1294.06	
1302.59	1303.66	1303.65	1301.86	1302.15	1302.08	
1302.79	1304.20	1304.20	1303.92	1302.86	1302.79	
1308.39	1306.70	1306.70	1309.49	1303.48	1303.43	
1314.83	1309.04	1309.04	1319.79	1307.47	1307.43	
1317.60	1318.75	1318.76	1324.21	1313.15	1313.11	
1324.71	1324.97	1324.97	1325.90	1317.98	1317.90	
1329.37	1327.84	1327.84	1336.11	1321.16	1321.12	
1336.79	1341.35	1341.35	1345.12	1326.70	1326.62	
1340.07	1342.13	1342.13	1356.05	1329.36	1329.32	
1351.31	1357.72	1357.71	1357.29	1336.95	1336.98	
1356.87	1357.85	1357.84	1361.29	1340.83	1340.85	
1357.24	1358.38	1358.38	1369.55	1347.79	1347.80	
1358.30	1358.86	1358.88	1373.56	1351.59	1351.58	
1367.57	1363.05	1363.05	1383.44	1357.22	1357.25	
1390.82	1366.14	1366.13	1391.37	1357.65	1357.66	
1419.59	1391.07	1391.03	1403.63	1411.50	1411.39	

molecule-2					
ω_{S_0}	$\omega_{\mathrm{S}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{S}_{\mathrm{CT-Biph}}}$	$\omega_{T_{CT-Biph}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$
	$(\phi = 89.53^{\circ})$				
1423.19	1424.91	1424.91	1420.25	1422.92	1422.88
1430.10	1428.81	1428.82	1431.43	1429.52	1429.51
1444.99	1433.35	1433.35	1457.55	1429.88	1429.84
1464.79	1447.02	1447.02	1463.31	1436.99	1436.93
1468.22	1452.65	1452.67	1469.77	1445.72	1445.69
1477.21	1468.46	1468.46	1470.38	1464.17	1464.14
1479.69	1471.81	1471.82	1478.64	1465.86	1465.80
1494.96	1477.41	1477.40	1484.32	1472.64	1472.44
1512.42	1479.26	1479.25	1491.48	1477.44	1477.40
1518.26	1486.13	1486.14	1494.34	1480.54	1480.51
1525.13	1515.56	1515.56	1503.25	1506.57	1506.57
1537.62	1521.02	1521.02	1510.02	1516.31	1516.30
1542.25	1525.98	1525.97	1521.37	1522.36	1522.32
1552.35	1532.68	1532.67	1524.53	1523.83	1523.80
1558.16	1539.00	1538.99	1540.26	1532.54	1532.49
1573.83	1549.75	1549.74	1543.28	1551.12	1551.12
1584.75	1550.83	1550.82	1550.11	1552.31	1552.31
1595.30	1552.13	1552.12	1552.94	1563.74	1563.72
1610.57	1582.49	1582.48	1583.31	1569.60	1569.57
1616.10	1588.81	1588.81	1586.97	1584.78	1584.72
1616.72	1599.10	1599.12	1592.87	1593.58	1593.53
1627.36	1603.24	1603.22	1603.35	1615.83	1615.75
1627.82	1613.80	1613.81	1610.46	1617.00	1616.91
1635.78	1617.11	1617.11	1615.91	1621.52	1621.47
1637.63	1617.38	1617.38	1628.29	1622.08	1622.04
1638.56	1636.32	1636.32	1636.23	1637.53	1637.42
1644.90	1638.09	1638.09	1637.22	1638.39	1638.28
1647.49	1641.57	1641.57	1643.32	1643.99	1643.91
1661.65	1645.56	1645.56	1654.99	1646.94	1646.87
1668.58	1659.61	1659.62	1662.93	1660.71	1660.68
3162.94	3140.85	3140.86	3158.35	3163.31	3163.44
3163.03	3149.08	3149.11	3163.24	3163.36	3163.48
3166.77	3151.96	3151.98	3163.40	3163.38	3163.53
3167.75	3163.74	3163.77	3168.50	3168.46	3168.57

molecule-2					
ω _{S0}	$egin{aligned} \omega_{\mathrm{S}_{\mathrm{CT-Naph}}} \ (\phi = 89.53^\circ) \end{aligned}$	$\omega_{\mathrm{S}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Biph}}}$	$\omega_{\mathrm{T}_{\mathrm{CT-Naph}}}$	$\omega_{\mathrm{T}_{\mathrm{LE-Naph}}}$
3167.80	3164.83	3164.85	3168.58	3168.51	3168.60
3169.70	3165.06	3165.06	3169.35	3170.19	3170.33
3169.92	3165.07	3165.07	3169.66	3171.34	3171.47
3170.32	3170.49	3170.49	3171.86	3171.51	3171.58
3171.24	3170.55	3170.55	3173.23	3172.07	3172.19
3171.44	3176.17	3176.17	3174.11	3172.66	3172.80
3175.63	3176.78	3176.77	3178.15	3172.93	3173.02
3177.92	3177.37	3177.39	3178.68	3178.38	3178.45
3177.99	3177.75	3177.75	3180.95	3178.44	3178.52
3182.22	3178.50	3178.49	3183.35	3181.44	3181.55
3182.27	3180.31	3180.31	3185.19	3183.11	3183.16
3183.45	3180.35	3180.35	3187.03	3183.11	3183.19
3184.40	3184.51	3184.51	3188.50	3185.04	3185.10
3185.81	3185.11	3185.11	3189.96	3186.46	3186.54
3185.86	3191.26	3191.26	3190.05	3188.02	3188.09
3188.28	3192.04	3192.04	3191.86	3188.03	3188.11
3188.42	3192.29	3192.29	3192.28	3191.26	3191.33
3188.51	3192.61	3192.60	3194.47	3191.85	3191.90
3191.79	3194.38	3194.38	3195.48	3192.33	3192.41
3191.81	3194.92	3194.92	3199.14	3192.75	3192.80
3192.63	3204.38	3204.36	3199.73	3194.38	3194.40
3192.92	3205.07	3205.05	3200.64	3196.59	3196.58
3195.77	3209.83	3209.83	3201.63	3197.21	3197.18
3199.54	3210.25	3210.25	3214.34	3197.82	3197.85
3206.36	3229.85	3229.84	3214.77	3213.27	3213.26
3206.80	3230.54	3230.54	3223.45	3221.85	3221.76

S15 Coordinates of the optimized geometries of molecule 1

С	-6.64994200	-0.67600800	0.82481800
С	-5.25268700	-0.52449500	0.86281200
C	-4.65766200	0.69524500	0.59948800
C	-5.42206300	1.82958600	0.27693000
C	-6.81072900	1.68179200	0.23958300
C	-7.41141100	0.45351300	0.50904800
C	-3.36841100	3.08908500	0.02090800
C	-2.64503000	1.92948600	0.34817200
C	-1.26270500	1.92218000	0.36383700
Н	-0.76796200	0.98805100	0.59990300
C	-0.52518900	3.07981400	0.05952900
C	-1.24434000	4.23546900	-0.26072200
C	-2.63778800	4.24096600	-0.28087500
Н	-4.60321200	-1.36350000	1.08046100
Н	-7.42850300	2.53820600	0.00494100
Н	-3.16450700	5.15331300	-0.52656300
Н	-8.49258700	0.39129800	0.49292000
Н	-0.71975600	5.15804400	-0.47704800
N	-4.77295800	3.04800600	0.01512700
0	-3.27746200	0.74144300	0.66409500
С	0.95823000	3.06762600	0.08438600
С	1.70235900	3.83059800	-0.83067900
С	1.66165000	2.29473300	1.02285600
С	3.09447500	3.82395000	-0.80546600
Н	1.18716200	4.41704400	-1.58268100
С	3.05391200	2.28538500	1.04568900
Н	1.11496600	1.71257400	1.75583400
C	3.77805900	3.05072300	0.13236300
Н	3.64599600	4.41668300	-1.52679400
Н	3.57339000	1.68536500	1.78455300
С	-7.28364900	-1.98605900	1.11387700
С	-8.44631900	-2.39075500	0.43736100
С	-6.74147000	-2.85898300	2.07145000
C	-9.04502000	-3.61776300	0.71046600
Н	-8.87308000	-1.74906400	-0.32481300
C	-7.33832900	-4.08763800	2.34202500
Н	-5.85725100	-2.56507700	2.62528700
C	-8.49396000	-4.47346500	1.66377900
Н	-9.93845400	-3.90978100	0.16981100
Н	-6.90391200	-4.74079000	3.09067500
С	-5.53109500	4.20667000	-0.36645900
C	-5.96780100	5.12389400	0.63593400
C	-5.82678600	4.41816300	-1.69332600
C	-5.68728000	4.94809200	2.01652500
C	-6.72177800	6.27015500	0.22308500
С	-6.57108300	5.55082900	-2.09228100
Н	-5.48232600	3.70527900	-2.43320900
С	-6.13080500	5.86171700	2.94298000
Н	-5.11790100	4.08296700	2.33212300
С	-7.16303200	7.19252900	1.20901500
С	-7.00776600	6.45491700	-1.15500800

Н	-6.79331500	5.69874300	-3.14234800
С	-6.87530700	6.99453000	2.53763500
Н	-5.90967500	5.71553700	3.99403400
Н	-7.73326300	8.05916600	0.89246100
Н	-7.57949900	7.32570000	-1.45687800
Н	-7.21738900	7.70531500	3.28094000
Н	-8.95898600	-5.42959900	1.87484300
Н	4.86185400	3.04409800	0.15059200
S _{CT-Naph}	geometry (Å) (B3LYP/6-31	1G(d,p))	
~		-	
C	-6.62510600	-0.66646100	0.81849300
C	-5.23412100	-0.54368400	0.84018500
C	-4.63543900	0.67225300	0.55244600
C	-5.39783700	1.81753000	0.22488300
C	-6.79907700	1.68965700	0.20537100
C	-7.39081300	0.47971300	0.49490000
C	-3.37598100	3.05771100	-0.02411900
C	-2.64168800	1.89469700	0.30513500
C	-1.25665400	1.89426200	0.34383400
Н	-0.75551300	0.96392700	0.57537200
C	-0.54383000	3.06135500	0.06082100
C	-1.27681600	4.22863800	-0.26287000
C	-2.65377700	4.23219000	-0.30575700
Н	-4.59207100	-1.38689900	1.05712100
Н	-7.39425400	2.55902400	-0.03241900
Н	-3.20192100	5.13095900	-0.54723000
Н	-8.47089800	0.41622000	0.49608900
Н	-0.74802000	5.15161100	-0.46078600
N	-4.75816500	3.00981700	-0.06400700
0	-3.27424600	0.72097400	0.58514200
С	0.93541000	3.07860200	0.10123300
C	1.66775700	3.88360000	-0.78672600
С	1.64047300	2.29053400	1.02569900
С	3.05872100	3.89515900	-0.75384300
Н	1.14929500	4.48357000	-1.52500100
С	3.03102500	2.30839800	1.06096100
Н	1.09868700	1.68082200	1.73898900
С	3.74576900	3.10927500	0.17057300
Н	3.60618500	4.51453500	-1.45476400
Н	3,55663900	1.70153700	1.78903400
C	-7.28028000	-1.95668000	1.12876300
C	-8,46956700	-2.33117800	0.48211900
C	-6.72824800	-2.83616500	2.07461800
C	-9 08240400	-3 54701100	0 76871000
с Н	-8 90411800	-1 68185800	-0.26839900
C	-7 34603600	_4 04847300	2 36419400
н	-5 82569000	-2 55931900	2.60634300
C	-8.5246400	-2.00901900 -2.00901900	1 71150700
с ц	-0.02440400 0 00250200	-7.40201000	0 25081200
11 U	-3.3303200	-J.OZZJ4ZUU	2 10510000
п	-0.91045300	-4.10005200	3.10519000
C	-5.52455800	4.100000UU	-0.41099200
C	-5.93950200	0.00982600	0.02345800
C	-5.82081400	4.40545000	-1./8444500
C	-5.65780000	4.8/6/3400	1.99558700

С	-6.70158500	6.23680800	0.22242700
C	-6.55026300	5.52843600	-2.13797800
Н	-5.47632200	3.69710300	-2.52829900
С	-6.10304700	5.79378300	2.96654000
Н	-5.08965700	4.00919600	2.30998500
С	-7.12854300	7.13182900	1.23181800
С	-6.98786900	6.43528000	-1.15887300
Н	-6.78479500	5.70745300	-3.18203800
С	-6.83269000	6.91221400	2.58585900
Н	-5.87177100	5.61942000	4.01194100
Н	-7.69908700	8.00713500	0.93695500
Н	-7.55823100	7.31160000	-1.44781800
Н	-7.17651400	7.62012600	3.33305600
Н	-9.00433800	-5.35490000	1.93652100
Н	4.82912300	3.12146700	0.19767900

C	-6.63874400	-0.68131300	0.83753600
C	-5.24173300	-0.51853000	0.87173800
C	-4.64890500	0.68642800	0.55494700
C	-5.42145300	1.83111200	0.17843400
C	-6.82776100	1.67536500	0.14829400
C	-7.41038400	0.47249200	0.45980200
C	-3.38631400	3.08004300	-0.07149400
С	-2.64791300	1.91359200	0.30660700
С	-1.26994400	1.91631800	0.37619200
Н	-0.79194000	0.98263400	0.64174400
С	-0.52132700	3.06926000	0.07638800
С	-1.26875500	4.23980100	-0.29902300
С	-2.63944100	4.24543400	-0.36627500
Н	-4.58089000	-1.33951600	1.11689000
Н	-7.44745200	2.52134900	-0.11655500
Н	-3.16128100	5.15232900	-0.64033400
Н	-8.48998700	0.41321900	0.44699400
Н	-0.74710100	5.16341200	-0.50876700
Ν	-4.76605600	3.01262200	-0.11164500
0	-3.28691700	0.74453600	0.59869400
С	0.93748200	3.07676800	0.13851500
С	1.70145500	4.08265200	-0.50745200
С	1.66163800	2.08253200	0.84522600
С	3.08903100	4.08616100	-0.45298100
Н	1.20474600	4.85263900	-1.08433600
С	3.04748100	2.09292700	0.89604300
Н	1.13024100	1.30814000	1.38490500
C	3.78011200	3.09427500	0.24791500
Н	3.63803500	4.86709100	-0.96850000
Н	3.56422200	1.31965200	1.45452200
C	-7.27268500	-1.95539400	1.16449800
C	-8.60553500	-2.24182800	0.77221600
С	-6.59052400	-2.96627200	1.88892800
C	-9.20636300	-3.45555700	1.07908400
Н	-9.16649300	-1.51840300	0.19389300
С	-7.19735500	-4.17573500	2.19277000
Н	-5.58209200	-2.78989100	2.24296700

С	-8.51291700	-4.43706800	1.79216800
Н	-10.22428500	-3.64101600	0.75283300
н	-6.64529300	-4.92012200	2.75667000
С	-5.53104300	4.18867400	-0.46500100
C	-5.95441200	5.08240500	0.55892900
C	-5.82567400	4,40597600	-1.78941900
C	-5,66878300	4.89026400	1.93646400
C	-6.70887400	6.23384700	0.16016000
C	-6.57066600	5.54521000	-2.16782400
н	-5 48382900	3 70073000	-2 53694300
C	-6 10888800	5 79494400	2 87284500
с Н	-5 09974300	4 02345600	2 24828600
C	-7 14539500	7 14503700	1 15737500
C	-7 00050400	6 43563000	-1 21524000
ы Н	-6 79759100	5 70701300	-3 21445400
C	-6 85356300	6 93284300	2 48307700
ы Н	-5 88397400	5 63642100	3 92113700
н	-7 71576900	8 01516900	0 85139100
н	-7 57249800	7 31098000	-1 50228000
и П	-7.19221800	7.63556400	3 23523800
и П	-8.98545800	-5 38207900	2 03301700
11 U	4 86280700	-3.30207900	2.03301700
п	4.80289700	3.10127900	0.29119300
T _{CT-Phen} ge	ometry (Å) (B3LYP/6-311	G(d,p))	
С	-6.64151100	-0.71606800	0.82817900
С	-5.22217800	-0.53801800	0.85321200
С	-4.64151000	0.66151300	0.56171200
С	-5.42036200	1.83046900	0.20776700
C	-6.83242600	1.67429900	0.17958000
С	-7.41938400	0.47829200	0.47068300
C	-3.37807200	3.07941200	-0.02825100
C	-2.64932800	1.91909900	0.33334800
C	-1.26428100	1.92697800	0.39833800
Н	-0.77087700	0.99787700	0.65430200
C	-0.53461600	3.08494400	0.11059700
C	-1.26487000	4.24627400	-0.24945600
C	-2.64214300	4.24642500	-0.31663600
Н	-4.55470000	-1.34991200	1.10676400
Н	-7,44917700	2.52464900	-0.08057200
н	-3.16829300	5.15208000	-0.58560000
н	-8,49732500	0.42335200	0.43156400
н	-0.73756200	5,16924200	-0.45374400
N	-4.76093100	3.01326900	-0.08163800
0	-3,27855300	0.73895500	0.61502500
C	0 94218100	3 09584300	0 17816200
C	1 69985000	3 92642100	-0 66747800
C	1 63608900	2 27743500	1 08798300
C C	3,09011000	3,93574000	-0.60677700
н	1 19889100	4,55183100	-1.39689300
C	3 02605900	2 28698300	1 14663300
н	1 08071700	1 64628600	1 77346400
C	3 76014300	3 11628200	0 20003600
н	3 65010300	4 57927200	-1 27600400
H	3.53549600	1.65194500	1.86278900
	0.00010000		

С	-7.26483300	-1.96959700	1.13116300
C	-8.68756200	-2.13493800	1.11164100
C	-6.50892000	-3.13768400	1.47324300
С	-9.28522400	-3.34890300	1.40576500
Н	-9.32770100	-1.29918500	0.86354000
С	-7.11919400	-4.34261600	1.76430300
Н	-5.42812200	-3.09147600	1.50815500
С	-8.51738700	-4.47272200	1.73657500
Н	-10.36748700	-3.42481200	1.37811800
Н	-6.50355700	-5.19965000	2.01762500
С	-5.52239900	4.18260100	-0.46215400
С	-5.95169100	5.09429400	0.54437900
С	-5.81362600	4.38149700	-1.78964200
С	-5.67406200	4.91941000	1.92562500
C	-6.70062300	6.24169900	0.12550900
C	-6.55387200	5.51604200	-2.18964500
Н	-5.47075500	3.66426200	-2.52545300
С	-6.11600400	5.83810700	2.84751500
Н	-5.11111100	4.05352200	2.25052600
С	-7.13917000	7.16877000	1.10816000
С	-6.98539200	6.42326100	-1.25306000
Н	-6.77564100	5.66197600	-3.23971900
С	-6.85431800	6.97321200	2.43740000
Н	-5.89820600	5.69333400	3.89927400
Н	-7.70516100	8.03656800	0.78782500
Н	-7.55335900	7.29569900	-1.55660700
Н	-7.19431900	7.68739600	3.17819200
Н	-8.99025900	-5.42019700	1.96565600
Н	4.84494600	3.12445500	0.34710100

T_{LE–Naph} geometry (Å) (B3LYP/6-311G(d,p))

С	-6.66837500	-0.81951600	0.78021900
С	-5.27517000	-0.64908900	0.76039400
С	-4.71212600	0.60001400	0.56764600
С	-5.50874100	1.74222800	0.37184000
С	-6.89896500	1.57864400	0.43527400
С	-7.46467500	0.32353300	0.62293300
С	-3.49372300	3.06613800	0.18439500
С	-2.74440500	1.90125600	0.41424800
С	-1.35875800	1.92078800	0.42796800
Н	-0.84554700	0.98067600	0.58697500
С	-0.65065400	3.10895000	0.20330600
С	-1.39754300	4.26739300	-0.05434100
С	-2.78682900	4.24578700	-0.06987500
Н	-4.60357600	-1.49009500	0.87918400
Н	-7.53714200	2.44745400	0.35293400
Н	-3.33121900	5.15602700	-0.27503700
Н	-8.54274500	0.24390900	0.68447500
Н	-0.89247700	5.20924000	-0.22866000
Ν	-4.90537500	2.99493500	0.16675400
0	-3.33904600	0.67165700	0.59437500
С	0.83233600	3.13076900	0.22873100
С	1.55712900	3.96498500	-0.63795600

С	1.55184500	2.31856000	1.12021600
С	2.94894400	3.98717700	-0.61242000
Н	1.02886400	4.58449700	-1.35335000
С	2.94378600	2.33998500	1.14427700
Н	1.01808800	1.68156600	1.81610300
С	3.64944400	3.17471300	0.27850900
Н	3.48696500	4.63412800	-1.29619300
Н	3.47723800	1.70932000	1.84659000
С	-7.27086300	-2.15896700	0.98433800
С	-8.46856400	-2.51391400	0.34207400
С	-6.66380600	-3.10799300	1.82304700
С	-9.03804200	-3.76984400	0.53263200
Н	-8.94580500	-1.80978500	-0.32955500
С	-7.23333200	-4.36413100	2.01251600
Н	-5.75142400	-2.85392500	2.34997500
С	-8.42333100	-4.70146100	1.36857600
Н	-9.95906300	-4.02377500	0.02003700
Н	-6.75047200	-5.07746300	2.67092700
С	-5.70455500	4.10429300	-0.20733400
С	-5.79712900	5.26672500	0.62670100
С	-6.42118800	4.02746000	-1.47350600
С	-5.25094800	5.33743400	1.91846000
С	-6.52935000	6.40373100	0.12055400
С	-7.09708900	5.11664100	-1.93588900
Н	-6.34473900	3.11939900	-2.05816300
С	-5.36479000	6.52031300	2.70817200
Н	-4.73619400	4.47716700	2.32755500
С	-6.63025300	7.55322000	0.92290100
C	-7.15252600	6.31902100	-1.15823500
Н	-7.59022400	5.08511400	-2.90055400
С	-6.03752700	7.61198600	2.21715700
Н	-4.91227000	6.54430100	3.69268200
Н	-7.18224200	8.40741200	0.54624600
Н	-7.69989700	7.17660500	-1.53175500
Н	-6.12783800	8.51814100	2.80497600
Н	-8.86654000	-5.67953000	1.51633500
Н	4.73307200	3.19169800	0.29761500

T_{CT-Naph} geometry (Å) (B3LYP/6-311G(d,p))

С	-6.58532000	-0.54048100	0.95346400
С	-5.18863300	-0.43332500	0.91594900
С	-4.57188500	0.77866600	0.64896700
С	-5.31566900	1.94631500	0.41513300
С	-6.70959900	1.83295700	0.42262900
С	-7.32950200	0.61881600	0.69176900
С	-3.23798600	3.13979400	0.08795200
С	-2.54091700	1.93672500	0.29866800
С	-1.15931600	1.88372300	0.24694700
Н	-0.68761400	0.92003100	0.39229800
С	-0.39982500	3.03689900	-0.00558400
С	-1.09073700	4.24449100	-0.17799400
С	-2.47797900	4.29841100	-0.12059000
Н	-4.55319200	-1.29771700	1.06262700

н	-7 31341100	2 70598700	0 22223900
н	-2.98191000	5.24959700	-0.22153000
Н	-8.41154600	0.58395600	0.71459300
Н	-0.54107200	5.16613100	-0.32226300
N	-4.64260600	3.15731100	0.13461300
0	-3.19589600	0.76147300	0.58315800
C	1.08069900	2.97780100	-0.06321700
C	1.79934300	3.79920500	-0.94743200
C	1.80476200	2.10146400	0.76167600
C	3.18938100	3.74693100	-1.00333100
н	1.26520800	4.46737300	-1.61294400
C	3.19476700	2.04899500	0.70459600
н	1.27859200	1.47216600	1.47008200
C	3.89422500	2.87150700	-0.17786400
н	3.72188200	4.38521200	-1.69943000
Н	3.73240000	1.36988600	1.35671800
C	-7.24416500	-1.83632200	1.24866900
C	-8.45007600	-2.19208000	0.62294500
C	-6.68029200	-2.74245800	2.16139400
C	-9.06924700	-3.40764500	0.90092800
Н	-8.89540900	-1.52287300	-0.10397200
С	-7.29918300	-3.95859300	2.43804100
Н	-5.76186800	-2.48428200	2.67589800
С	-8.49694000	-4.29727000	1.80954700
Н	-9.99597700	-3.66362900	0.39973400
Н	-6.84862800	-4.63886900	3.15202500
С	-5.34180400	4.32731000	-0.25452400
С	-6.17970900	5.03292800	0.67036400
С	-5.19005800	4.78188000	-1.63047700
С	-6.24740600	4.72906700	2.03976200
С	-6.95852800	6.13954500	0.16657000
С	-5.94320100	5.82207000	-2.08646100
Н	-4.52522800	4.23477300	-2.28691500
С	-7.10245000	5.45715900	2.91959500
Н	-5.63653200	3.92924700	2.43915400
С	-7.78761000	6.84241600	1.05750400
С	-6.84292500	6.50618100	-1.20582900
Н	-5.87454600	6.13384300	-3.12225000
С	-7.86441500	6.49235500	2.43640500
Н	-7.14330400	5.18006800	3.96657700
Н	-8.37157400	7.67573800	0.68231100
Н	-7.43126200	7.33716800	-1.57715600
Н	-8.52129900	7.05092800	3.09313000
Н	-8.97885800	-5.24394500	2.02514000
Н	4.97646700	2.83049000	-0.22200700

S16 Coordinates of the optimized geometries of molecule 2

С	-1.66491800	-4.30680000	1.05994700
С	-2.36690200	-3.15506500	0.71038400
С	-1.69732500	-1.98653100	0.33879600
C	-0.29222900	-2.01922800	0.32969700

С	0.40482700	-3.16215600	0.67347100
С	-0.26661300	-4.33906200	1.05019700
С	-0.20343200	0.24078400	-0.39250900
С	-1.60676600	0.31958000	-0.39774200
С	-2.18301800	1.53178200	-0.78556300
Н	-3.26068500	1.62177200	-0.81115800
С	-1.39313000	2.61987500	-1.15093600
С	0.58078100	1.31869000	-0.75790200
Н	-2.22646600	-5.19592600	1.31894000
Н	-3.44854800	-3.16663000	0.71666000
н	1,48663300	-3.11124300	0.66516300
Н	-1.88378300	3.53239800	-1.46646600
Н	1.65581900	1.19563600	-0.71100100
N	-2.36236000	-0.80010900	-0.01241700
0	0.45981400	-0.90963300	-0.00823700
C	0.48614200	-5.56195800	1,41633300
C	0 00923800	-6 44376700	2 39955800
C	1 70305000	-5 88513000	0 79498000
C	0 71303400	-7 59172300	2 74234600
е н	-0 91805400	-6 22279700	2 91528700
C	2 40741600	-7 03249400	1 13916200
е н	2.10711000	-5 23876800	0 02079100
C	1 92958300	-7 91373800	2 12112300
с н	0 30374500	-8 25367400	3 49684400
ч	3 35022200	-7.2383/000	0.64550600
C	2 68260700	0 13007100	2 48081700
C	2.00209700	-9.13907100	2.40901700
C	2.72421000	9.30007000	1 51028600
C	2 42042100		1.51920000
U U	2 21788000	0.02262100	4.10344900
n C	2.21700000	-9.02202100	4.09271700
С 11	4.00092300	-11.03073800	1.00000000
n C	4 1104000	-9.57014500	2 10017600
U U	4.11242200	-11.40475500	5.19017000
n u	4 60007900	-11.00135600	1 00700200
n C	4.00097800	-11.0919000	1 14624100
C II	0.00332800	2.54001000	-1.14024100
H C	4.00234800	-12.35920000	3.45954400
C	-3.79763200	-0.75134900	-0.03650000
C	-4.50967600	-0.34000000	1.13302000
C	-4.40781900	-1.09358100	-1.18812900
C	-5.94093800	-0.3106/100	1.07400300
C	-3.80284000	1 05270500	2.34385300
C II	-5.87929800	-1.05372500	-1.23/29/00
H	-3.90101100	-1.39538000	-2.06099800
C	-6.59780800	-0.67099800	-0.13111100
C	-6.66431900	0.08829800	2.23006800
U H	-4.59576400	0.39363100	3.442/3400
н	-2.78160900	-0.01495800	2.39254300
н	-6.38778600	-1.32/34400	-2.15404900
н	-7.68139900	-0.63906800	-0.16432100
C	-6.00893700	0.43250100	3.38733200
н	-7.74747700	0.11632700	2.18162/00
H	-4.08906900	0.66719900	4.36108400
Н	-6.57173200	0.73528100	4.26272700

С	0.84859900	3.69300100	-1.53822800
С	0.45593800	5.01221800	-1.25983100
С	2.07193200	3.51034500	-2.20284000
С	1.24505000	6.09393500	-1.63092000
Н	-0.46480500	5.19524900	-0.71822000
С	2.86236100	4.59230900	-2.57104900
Н	2.39784200	2.51011200	-2.46377600
С	2.46781300	5.91049900	-2.29509500
Н	0.92011800	7.09496500	-1.37148500
Н	3.78559800	4.40977200	-3.10886500
С	3.31173300	7.06649800	-2.68960000
С	2.73210400	8.26628300	-3.13296700
С	4.71279900	6.99199100	-2.63058200
С	3.52353700	9.35061900	-3.50292400
Н	1.65367100	8.34408100	-3.20983800
С	5.50425200	8.07600000	-3.00146000
Н	5.18653800	6.08585200	-2.27079000
С	4.91361800	9.26083900	-3.43932700
Н	3.05314800	10.26414200	-3.84918700
Н	6.58394200	7.99717200	-2.94032200
Н	5.52971600	10.10480800	-3.72770400

C	-1.65381000	-4.27481300	1.04660900
С	-2.35088800	-3.14037200	0.69305900
С	-1.66352800	-1.97947700	0.29288100
С	-0.25022100	-2.02646700	0.26655900
С	0.44729700	-3.16935600	0.62052800
С	-0.23869500	-4.31998800	1.01873900
С	-0.16213700	0.21173100	-0.45148800
С	-1.57417600	0.28995000	-0.43459900
С	-2.16765000	1.51327600	-0.79711000
Н	-3.24540800	1.58401900	-0.80075000
C	-1.38342200	2.58943800	-1.15053900
С	0.62310700	1.29482800	-0.80986200
Н	-2.21017100	-5.15879300	1.32862100
Н	-3.43076400	-3.12314100	0.70611300
Н	1.52812900	-3.12954900	0.60080200
Н	-1.86852000	3.51050600	-1.44529800
Н	1.69765500	1.17400100	-0.77809900
Ν	-2.31987700	-0.81642300	-0.06824200
0	0.48171100	-0.93737700	-0.10150700
С	0.49100100	-5.54852400	1.39493700
С	-0.01192600	-6.41794400	2.37640600
С	1.71106500	-5.88463300	0.78614900
С	0.67860000	-7.56705800	2.73689800
Н	-0.94284200	-6.18669700	2.87988600
С	2.39584700	-7.03803500	1.14261300
Н	2.12240600	-5.24900600	0.01119000
С	1.89739900	-7.90501100	2.12809400
Н	0.25580200	-8.21921500	3.49174300
Н	3.33940100	-7.25995600	0.65851500
C	2.63279400	-9.13535500	2.51227200

С	2.65391700	-9.57555100	3.84544300
С	3.32652000	-9.89025800	1.55291200
С	3.34529900	-10.72881800	4.20626700
Н	2.14536100	-8.99897800	4.60938500
С	4.01583500	-11.04469700	1.91402800
Н	3.30765400	-9.58504400	0.51312400
С	4.02885800	-11.46895200	3.24225300
Н	3.35561500	-11.04538600	5.24310900
Н	4.53737400	-11.61714400	1.15530200
С	0.03019600	2.50884700	-1.16719600
Н	4.56636900	-12.36728200	3.52327900
С	-3.76847900	-0.75776100	-0.06317700
С	-4.43249700	-0.35904800	1.13303400
С	-4.45167100	-1.10130200	-1.25482300
С	-5.88155900	-0.31578100	1.08927500
С	-3.77521900	-0.01105700	2.33579000
С	-5.83569800	-1.05025500	-1.26754700
Н	-3.88821300	-1.39703100	-2.13163900
С	-6.54827100	-0.66521500	-0.12027600
С	-6.57152400	0.07502000	2.26114800
С	-4.50255400	0.37220700	3.47858700
Н	-2.69293300	-0.03856500	2.38360100
Н	-6.37250000	-1.31086300	-2.17367000
Н	-7.63221800	-0.62869200	-0.14203400
С	-5.88993700	0.41433600	3.44003300
Н	-7.65630700	0.10866400	2.23356800
Н	-3.97103200	0.63370300	4.38736700
Н	-6.45190000	0.70960000	4.32017500
C	0.85393800	3.67271500	-1.55459800
C	0.43472300	4.98291600	-1.27206600
С	2.08242000	3.50690600	-2.21458200
C	1.21239200	6.07625900	-1.62844900
Н	-0.49124000	5.15144900	-0.73564700
С	2.85486400	4.60175700	-2.57643500
Н	2.42328000	2.51361100	-2.48103100
C	2.43940100	5.91215900	-2.29036300
Н	0.87359300	7.07058600	-1.36325600
Н	3.78047600	4.43696900	-3.11485400
C	3.26774400	7.08192000	-2.67468300
С	2.67117800	8.27697700	-3.10756900
C	4.66934500	7.02346100	-2.61485500
C	3.44875500	9.37400000	-3.46843500
Н	1.59199300	8.34137500	-3.18463000
C	5.44635000	8.12142200	-2.97408000
H	5.15465400	6.12052500	-2.26283600
C	4.83973100	9.30145000	-3.40292700
H	2.96717800	10.28400000	-3.80806200
H	6.52678500	8.05698800	-2.91184400
Н	5.44487600	10.15592900	-3.68323600

С	-1.65372800	-4.27475700	1.04692800
С	-2.35084100	-3.14034800	0.69336100

С	-1.66352900	-1.97949100	0.29295000
С	-0.25021000	-2.02650900	0.26642800
С	0.44733300	-3.16938300	0.62037900
С	-0.23862500	-4.31996200	1.01881900
С	-0.16218600	0.21167900	-0.45166700
С	-1.57423800	0.28992600	-0.43458000
С	-2.16771800	1.51331200	-0.79692700
Н	-3.24547500	1.58407200	-0.80041400
С	-1.38350800	2.58947500	-1.15038000
С	0.62302700	1.29477400	-0.81009000
Н	-2.21003500	-5.15870800	1.32914700
Н	-3.43071500	-3.12307700	0.70657200
Н	1.52816400	-3.12965600	0.60049000
Н	-1.86859600	3.51059800	-1.44499200
Н	1.69758200	1.17396100	-0.77850600
N	-2.31989400	-0.81646700	-0.06822500
0	0.48162200	-0.93747200	-0.10187300
С	0.49111200	-5.54848200	1.39500100
C	-0.01158600	-6.41769700	2.37677100
C	1.71097600	-5.88475400	0.78591300
С	0.67898700	-7.56677600	2.73727700
Н	-0.94234800	-6.18628400	2.88045900
С	2.39580300	-7.03812500	1.14239000
Н	2.12210100	-5.24927400	0.01072100
С	1.89759600	-7.90488800	2.12817900
Н	0.25640200	-8.21877700	3.49237700
н	3.33920500	-7.26020500	0.65806600
C	2.63305900	-9.13519000	2.51238200
С	2.65460500	-9.57508900	3.84564300
С	3.32643000	-9.89033700	1.55295800
С	3.34605700	-10.72830600	4.20649600
Н	2.14633000	-8.99831400	4.60962100
С	4.01581600	-11.04472400	1.91410400
Н	3.30722500	-9.58535100	0.51311100
С	4.02926400	-11.46868100	3.24241900
Н	3.35670900	-11.04464300	5.24340400
Н	4.53707900	-11.61736700	1.15533500
С	0.03009900	2.50884100	-1.16724700
Н	4.56683000	-12.36697300	3.52346600
С	-3.76847700	-0.75785300	-0.06318100
С	-4.43262400	-0.35920600	1.13300700
С	-4.45166600	-1.10128700	-1.25489400
С	-5.88165700	-0.31597700	1.08916000
С	-3.77539000	-0.01126800	2.33578600
С	-5.83567800	-1.05026300	-1.26767700
Н	-3.88819500	-1.39694500	-2.13172500
С	-6.54836300	-0.66533200	-0.12041500
С	-6.57171400	0.07473700	2.26102800
С	-4.50279600	0.37190500	3.47857300
Н	-2.69310900	-0.03873400	2.38362900
Н	-6.37240400	-1.31080900	-2.17387100
Н	-7.63229900	-0.62881800	-0.14218400
С	-5.89018600	0.41398800	3.43994400
Н	-7.65649200	0.10835300	2.23336400

Н	-3.97135600	0.63336300	4.38741100
Н	-6.45217800	0.70917900	4.32009500
С	0.85381800	3.67270900	-1.55468800
С	0.43473700	4.98289400	-1.27186700
С	2.08213900	3.50690600	-2.21496700
С	1.21239900	6.07623700	-1.62825500
Н	-0.49110200	5.15137700	-0.73521500
С	2.85457600	4.60176200	-2.57682400
Н	2.42284900	2.51362000	-2.48164300
С	2.43925500	5.91214100	-2.29045400
Н	0.87375200	7.07055900	-1.36284700
Н	3.78005900	4.43702900	-3.11548200
С	3.26760500	7.08190500	-2.67477100
С	2.67102800	8.27702300	-3.10746700
С	4.66920900	7.02337100	-2.61512400
С	3.44860700	9.37404500	-3.46833300
Н	1.59183400	8.34146000	-3.18437200
С	5.44621500	8.12133200	-2.97434900
Н	5.15450900	6.12037200	-2.26325500
С	4.83958800	9.30142400	-3.40300900
Н	2.96703500	10.28410100	-3.80781900
Н	6.52665500	8.05685600	-2.91225500
Н	5.44473500	10.15590200	-3.68331700

T_{CT-Biph} geometry (Å) (B3LYP/6-311G(d,p))

С	-1.67802900	-4.29244400	1.06770500
С	-2.37858000	-3.15066800	0.73224100
С	-1.70174500	-1.98415500	0.33147900
С	-0.29009500	-2.02948000	0.28290400
С	0.40745500	-3.17901300	0.61847100
С	-0.26536000	-4.33908600	1.01952000
С	-0.18055500	0.22647000	-0.42820300
С	-1.61805300	0.30742200	-0.39819400
С	-2.19810900	1.54851200	-0.76426800
Н	-3.27548600	1.64766500	-0.75512500
С	-1.42399300	2.61316100	-1.12847200
С	0.60110700	1.28360800	-0.79202500
Н	-2.23564500	-5.17687500	1.34768800
Н	-3.45932800	-3.15217500	0.76555200
Н	1.48855300	-3.13667300	0.58232600
Н	-1.92531700	3.53065200	-1.39953600
Н	1.67006900	1.12381700	-0.78079000
Ν	-2.34954700	-0.80507300	-0.01325300
0	0.44953900	-0.93835600	-0.08438700
С	0.47574300	-5.56662200	1.37690200
С	-0.01852900	-6.46220400	2.34082300
С	1.70212900	-5.88510200	0.76862000
С	0.67971200	-7.61341900	2.68074000
Н	-0.95293100	-6.24934200	2.84645100
С	2.39807400	-7.03753000	1.10806100
Н	2.11164700	-5.23269900	0.00643700
С	1.90506000	-7.93016700	2.07330200
Н	0.25808700	-8.28367800	3.42076900

Н	3.34664600	-7.23941500	0.62420700
С	2.65027900	-9.16076200	2.43713500
С	2.66293300	-9.63323100	3.75974100
С	3.36394300	-9.88653500	1.46936700
С	3.36281900	-10.78734000	4.10144500
Н	2.13961300	-9.08068300	4.53152800
С	4.06362400	-11.04070100	1.81135400
Н	3.35308200	-9.55782100	0.43658900
С	4.06671000	-11.49695800	3.12905400
Н	3.36449800	-11.12805600	5.13078400
Н	4.60075000	-11.58854400	1.04519800
С	0.03587700	2.54716100	-1.16572800
Н	4.61159700	-12.39542100	3.39519700
C	-3.79391900	-0.74240000	0.01257000
C	-4,45494800	-0.34544800	1.21033200
C	-4,49233100	-1.06759300	-1.12476900
C	-5 88684800	-0 29846800	1 19429200
C	-3 76781900	0.00091300	2 40336000
C	-5 90391700	-1 01697200	-1 12766700
н	-3 95352200	-1 36343500	-2 01674600
C	-6 58268300	-0 64173400	0 00574300
C	-6 57222200	0.09321100	2 37486100
C	-4 46602400	0.37519300	3 52661300
с н	-2 68572300	-0.03030700	2 42408500
н	-6 44258800	-1 27692800	-2.03063900
н	-7 66634100	-0.60240900	0.00756900
C	-7.00034100	-0.00240900	3 51/5/300
ч	-7 65597000	0.42219000	2 35900/00
и и	-3.93001200	0.63759700	2.33300400 A A3126900
и и	-6./1371800	0.71968100	4.40120000
C	0.83645900	3 65932000	-1 54627600
C	0.0004000	4 93354400	1 89560100
C	0.27070400	3 59627200	-1.63500100
C	2.27070000	6 00517200	-1.01033000
U U	0 80060800	5 07847000	-2.20401000
C C	-0.00009000	4 67573700	1 07325100
U U	2 78066600	2 66032400	1 3813/000
C C	2.78000000	5 03260000	-1.30134000
U U	2.40027200	6 94330300	2 48806000
п u	4 11220700	4 54500100	-2.40000900
C C	3 2002/100	7 08003000	2 71013800
C	2 76704300	8 13306300	-2.71013000
C	2.70794300	7 18525000	-3.49400000
C	3 550/1000	0.22217600	-2.31094300
с ч	1 7/271/00	9.22211000 8 08617000	-3.80100100
C	T 1401 1400 E 10183600	8 27/22200	-3.04430000
с ц	5.4240000U 5 A94005AA	6 11752200	-2.00933900
п С	1 006620000	0.41100000	2 16202500
U U	4.00003200	3.30423000 10 00704200	-0.40000000 1 17170000
и и	5.11144900 6 15001600	10.00194000 9 30170000	7 36320200
и и	0.40021000 E 40E00000	0.32419200	-2.30320300
п	5.49592800	10.12312300	-3.13135000

T_{CT-Naph} geometry (Å) (B3LYP/6-311G(d,p))

C	-1.60567800	-4.35065900	1.29097600

С	-2.31722700	-3.19407800	0.99712700
С	-1.66783400	-2.04774300	0.51995200
С	-0.26675900	-2.09697700	0.40623400
С	0.44259500	-3.24623600	0.70499000
С	-0.21250900	-4.40817500	1.14426500
С	-0.20472100	0.17118000	-0.25716300
С	-1.60420300	0.26253300	-0.19042900
С	-2.18857400	1.47411800	-0.57391800
Н	-3.26511800	1.56404900	-0.58035700
С	-1.40823500	2.55668600	-0.95933100
C	0.57533900	1.25001200	-0.64185200
Н	-2.15152200	-5.22236100	1.62910700
Н	-3.38912600	-3.17499100	1.13628000
Н	1.52093800	-3.20777600	0.61621400
Н	-1.90415900	3.46897100	-1.26633000
н	1.64946700	1.11378500	-0.64842900
N	-2.35850200	-0.86494700	0.20463000
0	0 46742100	-0 99576200	0.03228500
C	0 54954100	-5 64000100	1 45360500
C	0 14370800	-6 51019400	2 47809300
C	1 70486400	-5 98214200	0 73290400
C	0 85802300	-7 66621000	2 76641700
с н	-0.73302000	-6 27417100	3 06965600
C	2 41816600	-7 13886900	1 02136200
С Н	2.41010000	-5 34458000	-0.07515500
C	2.04414400	-8.00865900	2 04510400
с u	0 50502200	-8.000003900	2.04310400
п п	3 310302200	-0.31094400	0 45058500
n C	2 77547900	-7.30110300	0.45056500
C	2.11041000	-9.24396400	2.33402300
C	2.92301200	-9.00940000	1 2211/200
C	3.30991000	-10.00037800	2.06606400
U U	2 40440400	-10.04797900	J. 90090400
n C	2.49449400	-9.11201700	4.40000700
U U	4.00007200	-11.15095900	1.02007300
n C	3.25220700	-9.09103300	0.29074000
U U	4.22445200	-11.58844000	2.94019700
п	3.74701000	-11.10805600	4.99729100
H C	4.52936400	-11.73094000	0.81355500
C III	-0.00811400	2.47490500	-0.99319600
H	4.78189400	-12.49032900	3.16571600
C d	-3.77500700	-0.87244600	0.15180400
C	-4.55634800	-0.06062400	1.03863300
C d	-4.41028000	-1.72941300	-0.84021600
C	-5.98642800	-0.02996500	0.84093000
C	-4.00811000	0.66628600	2.10771500
C	-5.76063100	-1.67580100	-1.01580000
н	-3.78241000	-2.34720700	-1.46983200
C	-6.56494700	-0.82195300	-0.19292300
C	-6.76977600	0.76075300	1.69913900
C	-4.82798000	1.46451600	2.95961500
н	-2.94252100	0.61943900	2.29388000
н	-6.23576700	-2.27170800	-1.78645000
H	-7.63886700	-0.79307800	-0.33583000
С	-6.18500100	1.51635000	2.75564600

Н	-7.84442400	0.78288300	1.55464200
Н	-4.36575100	2.02791400	3.76183200
Н	-6.81870600	2.12226400	3.39290000
С	0.82423700	3.62987900	-1.40290700
С	0.43935100	4.94540200	-1.09891300
С	2.02473500	3.45274700	-2.10885500
С	1.21666400	6.03074900	-1.48358900
Н	-0.46382300	5.12260800	-0.52674500
С	2.80194900	4.53852000	-2.49250100
Н	2.34151800	2.45533400	-2.39067300
С	2.41665200	5.85363300	-2.18952500
Н	0.90079400	7.02901800	-1.20356700
Н	3.70649100	4.36205200	-3.06291900
С	3.24724800	7.01359600	-2.60013800
С	2.65325400	8.21715800	-3.01283000
С	4.64935400	6.93858500	-2.58704500
С	3.43231300	9.30513900	-3.39781000
Н	1.57291800	8.29518600	-3.05417600
С	5.42833600	8.02646200	-2.97246500
Н	5.13434600	6.02912700	-2.25150300
С	4.82367500	9.21513300	-3.37961200
Н	2.95108100	10.22175700	-3.72009300
Н	6.50942200	7.94756100	-2.94681200
Н	5.43012200	10.06207600	-3.67948100

T_{LE-Naph} geometry (Å) (B3LYP/6-311G(d,p))

a	4 50000500	4 95996999	4 00000500
C	-1.59889500	-4.35306800	1.29386500
C	-2.31268800	-3.19765600	1.00073500
C	-1.66585000	-2.05046600	0.52218800
C	-0.26487700	-2.09759300	0.40620300
С	0.44672400	-3.24565600	0.70413500
С	-0.20587900	-4.40846900	1.14493500
С	-0.20734100	0.17051500	-0.25778300
C	-1.60685300	0.25976200	-0.18881800
C	-2.19364800	1.47036500	-0.57167600
Н	-3.27033800	1.55871200	-0.57654200
C	-1.41556100	2.55408100	-0.95853300
C	0.57047800	1.25043200	-0.64388800
Н	-2.14291100	-5.22542900	1.63323800
Н	-3.38440300	-3.18028200	1.14155300
Н	1.52485000	-3.20558800	0.61338900
Н	-1.91343600	3.46551500	-1.26489200
Н	1.64478300	1.11570100	-0.65228700
Ν	-2.35875400	-0.86876500	0.20777400
0	0.46699300	-0.99538400	0.03071200
С	0.55862100	-5.63896600	1.45359500
С	0.15539400	-6.50969700	2.47869100
C	1.71378900	-5.97924100	0.73171600
С	0.87205900	-7.66440000	2.76650400
Н	-0.72113900	-6.27519400	3.07113700
С	2.42944000	-7.13467100	1.01965000
Н	2.05116800	-5.34131300	-0.07683600
С	2.02614900	-8.00497400	2.04404500

Н	0.52100300	-8.31744300	3.55706300
Н	3.32327400	-7.35546100	0.44780700
С	2.79196200	-9.23885900	2.35250000
С	2.94110200	-9.68458300	3.67574800
С	3.38814000	-9.99355900	1.32933500
С	3.65958200	-10.84177200	3.96485300
Н	2.51038700	-9.10923500	4.48713600
С	4.10654000	-11.15073900	1.61863700
Н	3.27003800	-9.68482300	0.29705400
С	4.24591200	-11.58053500	2.93781000
Н	3.76787100	-11.16208700	4.99504400
Н	4.55135900	-11.72139400	0.81110600
С	-0.01536600	2.47443100	-0.99455800
Н	4.80525100	-12.48132700	3.16299100
С	-3.77535300	-0.87825600	0.15752000
С	-4.55610700	-0.06755800	1.04590800
С	-4.41133000	-1.73595400	-0.83336000
C	-5.98663200	-0.03885900	0.85098800
C	-4.00674400	0.65996300	2.11398000
C	-5.76208500	-1.68425100	-1.00631500
Н	-3.78380800	-2.35270000	-1.46434800
C	-6.56609400	-0.83161100	-0.18167600
C	-6.76941300	0.75079900	1.71077700
C	-4.82606500	1.45711400	2.96756600
ч Н	-2.94075100	0.61443100	2,29815600
н	-6 23790500	-2 28063700	-1 77616100
н	-7,64033500	-0.80440800	-0.32240800
C	-6 18354000	1 50715600	2 76620000
н	-7 84436300	0 77148300	1 56840300
н	-4 36302500	2 02110300	3 76889000
н	-6 81680500	2 11224000	3 40466800
C	0 81464300	3 63055400	-1 40583100
C	0 42741200	4 94573000	-1 10314100
C	2 01524900	3 45494600	-2 11204200
C	1 20254400	6 03213400	-1 48928500
н	-0 47590100	5 12199400	-0 53092300
C	2 79028400	4 54177700	-2 49715500
н	2.33395600	2 45788500	-2 39288200
C	2.0000000	5 85653200	-2 19547700
ч	0 88474700	7 03005700	_1 21024200
н	3 69498200	4 36625200	-3.06759900
C	3 23097600	7 01761500	-2 60757800
C	2 63/65900	8 22029500	-3.01961300
C	2.03403300	6 9//59200	-2 59657400
C	3 /1162500	0.34433200	-3 40593600
ч н	1 55/16200	2.00302000 8.00601000	-3 05030000
 C	5 /1011500	8 0335000	-2.02230000
ч	5.41011300	6 03580000	-2.3000000
C	J. 12011300 A 20216000	9 22120000	-2.20112100
ч	J 0708010200	3.22123000 10 22520400	-3.30300100
н Н	2.32000400 6 /012/000	7 95611600	-0.12101100
и и	5 10705000	10 06002700	-2.3030000
11	0.40190000	10.00903100	-0.03011000

S17 Coordinates of the optimized geometries of molecule 3

С	-1.52448200	-4.34477700	0.79956800
С	-2.16455700	-3.14409600	0.51334100
С	-1.50511700	-1.91611500	0.66092600
С	-0.17461800	-1.94874600	1.11618200
С	0.47269600	-3.15479600	1.36020000
C	-0.18896300	-4.38286100	1.21809600
C	-0.07244600	0.63039700	0.29035800
С	-1.41185500	0.43517500	-0.09214400
С	-1.98472500	1.39319000	-0.93988900
Н	-3.01285300	1.28462200	-1.25421400
С	-1.25398400	2.48792500	-1.38796100
С	0.66507100	1.70431200	-0.19533200
Н	-2.07270800	-5.26851100	0.65795000
Н	-3.18933900	-3.16463100	0.17128300
Н	1.49743200	-3.13066600	1.71213400
Н	-1.73758800	3.19483900	-2.05152600
Н	1.69323500	1.81513800	0.12885300
N	-2.14386100	-0.68412100	0.37552400
С	0.50288700	-5.66472000	1.50191400
С	-0.18191800	-6.73974900	2.09130300
С	1.86047900	-5.83890400	1.18802700
С	0.46603300	-7.94381300	2.35468100
Н	-1.22427200	-6.62550000	2.36589600
С	2.50907000	-7.04194900	1.45448500
Н	2.40802600	-5.03415100	0.71086300
С	1.81501300	-8.10093600	2.03852400
Н	-0.08227900	-8.75741700	2.81632200
Н	3.55629100	-7.15457400	1.19693400
С	0.08994600	2.66610900	-1.03813600
С	-3.58039200	-0.66253900	0.26421800
С	-4.34746600	-0.26569700	1.40128500
С	-4.20156600	-1.01612500	-0.91225500
C	-5.77557600	-0.24543500	1.28397600
С	-3.75709700	0.10799500	2.63757200
С	-5.61023900	-0.99411100	-1.01968700
Н	-3.60028900	-1.31403200	-1.76324900
С	-6.37870900	-0.61721900	0.05416500
С	-6.55159000	0.14794200	2.40686000
С	-4.53996300	0.48306000	3.70334000
Н	-2.67851300	0.09318000	2.72894300
Н	-6.07635000	-1.27693600	-1.95598800
Н	-7.46032600	-0.59884200	-0.02374300
С	-5.94999700	0.50408500	3.58925900
Н	-7.63207300	0.16197900	2.31287100
Н	-4.07525200	0.76583400	4.64098700
Н	-6.55279000	0.80248700	4.43922100
С	0.87739700	3.82246000	-1.53326400
С	0.28357500	5.08514600	-1.69129800
С	2.23669100	3.68655400	-1.85845900
C	1.02062100	6.17003900	-2.15888500
Н	-0.75792900	5.22460100	-1.42536600

C	2.97443100	4.77239500	-2.32287100
Н	2.71538200	2.71811200	-1.76868700
C	2.37007300	6.01957800	-2.47626000
Н	0.54152700	7.13679600	-2.26641300
Н	4.02110000	4.64102000	-2.57371300
S	0.65619500	-0.42541000	1.52972200
Н	2.31956600	-9.03783400	2.24495700
H	2.94408900	6.86457200	-2.83882500
S _{CT–Naph} geometry (Å)	(B3LYP/6-311	G(d,p))	
C	1 60446200	1 00701000	1 17/96000
C	-1.00440300	-4.20701900	1.17400200
C	-2.16275900	-3.09725500	0.77215500
C	-1.35875000	-1.98524000	0.43123700
C a	0.04729200	-2.15453800	0.52121200
C a	0.59797000	-3.37231200	0.93037500
C	-0.20403800	-4.45961100	1.26347700
C	0.15004600	0.44184600	-0.30752400
C	-1.26620200	0.35386500	-0.31374300
C	-1.97993700	1.51303900	-0.69599000
Н	-3.05744900	1.46735100	-0.71911800
C	-1.32806600	2.67238200	-1.04567000
C	0.79636000	1.62757700	-0.66766300
Н	-2.26114200	-5.11673800	1.40546800
Н	-3.23433800	-2.99662600	0.69965600
Н	1.67538500	-3.45219900	1.00802500
Н	-1.91823700	3.52655700	-1.35148500
Н	1.87829200	1.65807300	-0.62708400
Ν	-1.96361300	-0.79871900	0.03083000
C	0.38596900	-5.74750500	1.69309200
C	-0.25134300	-6.53825400	2.66295700
C	1.59386800	-6.20740500	1.14384700
C	0.30489600	-7.74582300	3.07374100
Н	-1.17328600	-6.19592300	3.11787900
С	2.14573700	-7.41756500	1.55234800
Н	2.09100200	-5.62929500	0.37373800
С	1.50460300	-8.19079100	2.51977500
Н	-0.19676000	-8.33671900	3.83132700
Н	3.07351200	-7.76048300	1.10914700
C	0.08292000	2.76152900	-1.04419800
C	-3.41822100	-0.75970500	-0.02823000
C	-4, 13918500	-0.36370700	1,13376800
C	-4 04467500	_1 11940800	-1 24489600
C	-5 58552700	_0 33987900	1 02841600
C	-3 5387/000	0.00051100	2 36192900
C	-3.33074000 5 /0791500	1 09751100	1 21956900
U	-3.42781500	-1.00751100	-1.31650600
н С	-3.44020600	-1.41227600	-2.09507500
C a	-6.19496400	-0.70561900	-0.20643600
U d	-0.33041400	0.04883700	2.100/1100
	-4.31967200	0.38070100	3.4698/100
H 	-2.45927700	-0.01229100	2.45544200
H	-5.92093100	-1.36079300	-2.24562800
Н	-7.27735700	-0.68396300	-0.27530100
C	-5.70443100	0.40417800	3.37182500
H	-7.41335100	0.06777400	2.09229700

Н	-3.83130100	0.65463700	4.39905200
Н	-6.30741200	0.69712500	4.22522400
С	0.77381200	4.01243500	-1.43066100
С	0.21494600	5.26356700	-1.12307500
С	2.00135000	3.97834000	-2.11210000
С	0.86565900	6.44058100	-1.48024300
Н	-0.72070900	5.31814000	-0.57940400
С	2.64795700	5.15634800	-2.47258300
Н	2.44038000	3.02615800	-2.38574800
С	2.08373100	6.39202700	-2.15707500
Н	0.42302900	7.39635700	-1.22466500
Н	3.58957800	5.10896900	-3.00725100
S	1.18742100	-0.88492900	0.15192500
Н	1.93564200	-9.13286300	2.83811700
Н	2.58836000	7.30918900	-2.43773200

С	-1.60451100	-4.28756000	1.17522800
С	-2.16274500	-3.09693900	0.77259200
С	-1.35868700	-1.98498700	0.43169300
С	0.04730900	-2.15429000	0.52167400
С	0.59795200	-3.37217900	0.93063800
С	-0.20408700	-4.45945500	1.26371300
С	0.15012600	0.44207300	-0.30703100
С	-1.26611900	0.35408200	-0.31343600
С	-1.97976400	1.51321400	-0.69600300
Н	-3.05727200	1.46753400	-0.71935700
С	-1.32784200	2.67251700	-1.04571300
С	0.79650100	1.62775000	-0.66732300
Н	-2.26126100	-5.11641900	1.40585300
Н	-3.23432900	-2.99621300	0.70014400
Н	1.67537600	-3.45215500	1.00812900
Н	-1.91799200	3.52664000	-1.35172900
Н	1.87844400	1.65817800	-0.62677300
Ν	-1.96353300	-0.79848300	0.03119500
С	0.38589000	-5.74743600	1.69311700
С	-0.25135000	-6.53822300	2.66300300
С	1.59369800	-6.20734500	1.14370900
С	0.30486100	-7.74586100	3.07361600
Н	-1.17321600	-6.19586100	3.11806200
С	2.14555600	-7.41756800	1.55205700
Н	2.09079200	-5.62919100	0.37360300
С	1.50448600	-8.19084700	2.51947600
Н	-0.19674300	-8.33680300	3.83120100
Н	3.07327700	-7.76047800	1.10873300
С	0.08314600	2.76168200	-1.04403800
С	-3.41816000	-0.75973300	-0.02816800
С	-4.13941800	-0.36385600	1.13365700
С	-4.04423400	-1.11959800	-1.24493700
С	-5.58578700	-0.34026900	1.02792800
С	-3.53934200	0.00049600	2.36191900
С	-5.42735800	-1.08793500	-1.31899700
Н	-3.43941700	-1.41242400	-2.09488500

С	-6.19481600	-0.70611100	-0.20703200
С	-6.33099000	0.04834700	2.16605900
С	-4.32060200	0.38058800	3.46968600
Н	-2.45989700	-0.01209500	2.45570800
Н	-5.92026500	-1.36131600	-2.24613100
Н	-7.27719600	-0.68462000	-0.27621100
С	-5.70533900	0.40381300	3.37129600
Н	-7.41391400	0.06711600	2.09142900
Н	-3.83244200	0.65462700	4.39894300
Н	-6.30861500	0.69666900	4.22452100
С	0.77409100	4.01252900	-1.43054400
С	0.21524100	5.26368800	-1.12302600
С	2.00167900	3.97838200	-2.11187300
С	0.86600700	6.44067700	-1.48018300
Н	-0.72044600	5.31828800	-0.57940900
С	2.64834500	5.15636600	-2.47234200
Н	2.44072900	3.02617300	-2.38541400
С	2.08413200	6.39207200	-2.15692100
Н	0.42337500	7.39646900	-1.22466500
Н	3.59001600	5.10892900	-3.00691800
S	1.18748500	-0.88456000	0.15291000
Н	1.93550900	-9.13296500	2.83770300
Н	2.58881100	7.30921000	-2.43756100

T_{CT-Phen} geometry (Å) (B3LYP/6-311G(d,p))

-1.62909600	-4.29615400	1.25990800
-2.19002100	-3.10405200	0.90321300
-1.40260300	-1.97141400	0.54841700
0.03912100	-2.13907200	0.63762500
0.59157100	-3.36046200	0.98445700
-0.18506600	-4.49353700	1.28798500
0.12253200	0.46795900	-0.18910500
-1.30434800	0.36619700	-0.25204100
-2.00351100	1.51180400	-0.71785100
-3.08075900	1.47925100	-0.79031600
-1.34745900	2.65504400	-1.09684200
0.76971700	1.64093500	-0.58513800
-2.28981400	-5.11939800	1.49258500
-3.26750700	-3.02402200	0.87508200
1.67153500	-3.41683700	1.05362000
-1.93384200	3.48490700	-1.46981500
1.84966100	1.67703600	-0.49726900
-1.98392400	-0.78322400	0.12414200
0.41041300	-5.77315100	1.62707100
-0.34644300	-6.80465000	2.24516400
1.77632300	-6.06386300	1.36193400
0.22558000	-8.02443200	2.58160900
-1.38741000	-6.63867000	2.49074900
2.33897800	-7.28413800	1.69972300
2.39595000	-5.33193300	0.85851800
1.57253800	-8.28183400	2.31537100
-0.38540100	-8.78187500	3.06135500
3.38370500	-7.46813200	1.47232700
	$\begin{array}{c} -1.62909600\\ -2.19002100\\ -1.40260300\\ 0.03912100\\ 0.59157100\\ -0.18506600\\ 0.12253200\\ -1.30434800\\ -2.00351100\\ -3.08075900\\ -1.34745900\\ 0.76971700\\ -2.28981400\\ -3.26750700\\ 1.67153500\\ -1.93384200\\ 1.84966100\\ -1.98392400\\ 0.41041300\\ -0.34644300\\ 1.77632300\\ 0.22558000\\ -1.38741000\\ 2.33897800\\ 2.39595000\\ 1.57253800\\ -0.38540100\\ 3.38370500\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

C	0.07670600	2.75634200	-1.05156000
С	-3.43527600	-0.74665600	0.06171600
С	-4.17044500	-0.30216100	1.19678100
С	-4.06060100	-1.14528400	-1.09354000
С	-5.59948100	-0.27826800	1.09535000
С	-3.55887900	0.11217000	2.40928500
С	-5.47013400	-1.11778900	-1.18155100
Н	-3.46601400	-1.47867700	-1.93545300
С	-6.21997400	-0.69352400	-0.11173700
С	-6.35759500	0.16220500	2.21301700
С	-4.32603900	0.53136100	3.46980000
Н	-2.47966500	0.09479200	2.49428800
Н	-5.95088900	-1.43340100	-2.09941000
Н	-7.30226300	-0.67066500	-0.17567900
С	-5.73744300	0.55789300	3.37264200
Н	-7.43893900	0.17976000	2.13294100
Н	-3.84745200	0.84477400	4.39030600
Н	-6.32646800	0.89179700	4.21884600
С	0.77712400	3.98250100	-1.47298600
С	0.15788500	5.24412500	-1.37172900
С	2.08745800	3.93999300	-1.98978700
С	0.81943200	6.40441500	-1.76107200
Н	-0.84079900	5.32194500	-0.95885600
С	2.74722600	5.10117200	-2.37635600
Н	2.58489400	2.98558100	-2.11622300
С	2.11864800	6.34266200	-2.26526100
Н	0.32009000	7.36204700	-1.66283100
Н	3.75256300	5.03573200	-2.77763300
S	1.13342000	-0.79343900	0.47158000
Н	2.01500900	-9.23627100	2.57519600
Н	2.63262300	7.24691200	-2.56998600

T_{CT-Naph} geometry (Å) (B3LYP/6-311G(d,p))

С	-1.60612300	-4.29919100	1.13980200
С	-2.16425000	-3.10916300	0.73499300
С	-1.36091500	-1.99004500	0.41686400
С	0.04427700	-2.15181300	0.52993200
С	0.59476700	-3.36839500	0.94311800
С	-0.20660600	-4.46242000	1.25493900
С	0.14711900	0.44456300	-0.29817100
С	-1.26835400	0.34946500	-0.32755000
С	-1.98138600	1.50139500	-0.73192000
Н	-3.05807400	1.44945400	-0.77360300
С	-1.32957100	2.66165300	-1.07897600
С	0.79338400	1.63167900	-0.65425300
Н	-2.26169000	-5.13410500	1.35116800
Н	-3.23493900	-3.01412000	0.64380800
Н	1.67097100	-3.44206700	1.04104500
Н	-1.91849200	3.50981600	-1.40342600
Н	1.87420400	1.66880300	-0.59405100
N	-1.96633200	-0.80201100	0.02096500
С	0.38334200	-5.74880200	1.68924900
С	-0.26726300	-6.54833600	2.64292100

С	1.60427400	-6.19843300	1.16075700
С	0.28868200	-7.75449100	3.05828300
Η	-1.19979800	-6.21397000	3.08189600
С	2.15589100	-7.40719600	1.57371700
Η	2.11231400	-5.61340300	0.40308600
С	1.50142600	-8.18923200	2.52500800
Н	-0.22351200	-8.35227100	3.80331500
Н	3.09404000	-7.74211700	1.14652300
С	0.08056800	2.75895900	-1.05127600
С	-3.42008700	-0.75980400	-0.02669700
С	-4.13199200	-0.36100400	1.13998500
С	-4.05664300	-1.12050000	-1.23863000
С	-5.57897200	-0.33414700	1.04526100
С	-3.52303700	0.00337800	2.36412500
С	-5.44070200	-1.08540500	-1.30151800
Н	-3.45920100	-1.41595100	-2.09279700
С	-6.19868000	-0.70042800	-0.18544400
С	-6.31502300	0.05717200	2.18742200
С	-4.29546800	0.38633800	3.47638500
Н	-2.44300900	-0.01172100	2.45092300
Н	-5.94139700	-1.35898000	-2.22450500
Н	-7.28146800	-0.67651400	-0.24645000
С	-5.68083400	0.41286000	3.38835500
Η	-7.39843300	0.07799800	2.12012300
Η	-3.79984000	0.66025000	4.40177500
Η	-6.27749300	0.70805600	4.24533700
С	0.77136900	4.01143400	-1.43292100
С	0.20105100	5.26105700	-1.14074200
С	2.00977800	3.98031000	-2.09445900
С	0.85126300	6.43971600	-1.49344100
Н	-0.74351700	5.31319200	-0.61244700
С	2.65582500	5.15992600	-2.45073200
Н	2.45808000	3.02903100	-2.35600500
С	2.08017800	6.39417700	-2.15058200
Н	0.39964900	7.39441600	-1.24983000
Н	3.60607800	5.11486600	-2.97011200
S	1.18300400	-0.87197400	0.19306700
Η	1.93228800	-9.13019000	2.84686500
Η	2.58442100	7.31256700	-2.42789800
T _{LE-N}	_{Naph} geometry (Å) (B3LYP/6-311	G(d,p))	
С	-1.53789000	-4.30618900	0.89231600
С	-2.16222900	-3.09231100	0.62821900
С	-1.46692200	-1.88010200	0.73509500
С	-0.11708200	-1.93893300	1.12406100
С	0.51141400	-3.15881400	1.34803500
С	-0.18526600	-4.37176500	1.24796500
С	-0.01097200	0.64111500	0.29152800
С	-1.37139300	0.46964700	-0.02035900
С	-1.97796700	1.44510800	-0.82352100
Н	-3.02448100	1.35554100	-1.08040600
С	-1.25774000	2.53420900	-1.30135900
С	0.71239300	1.71165100	-0.22208800
Н	-2.11309800	-5.21788200	0.78407200

Н	-3.20301900	-3.09061400	0.33482200
Н	1.55219400	-3.15746900	1.65028900
Н	-1.76684800	3.25527800	-1.92958200
Н	1.75782500	1.80699400	0.04714900
N	-2.10006100	-0.63956100	0.47488300
С	0.48916300	-5.66753400	1.50998400
С	-0.19018500	-6.71927000	2.14584400
С	1.82394800	-5.87851700	1.12831200
С	0.44099000	-7.93648000	2.38875300
Н	-1.21379800	-6.57627500	2.47258400
С	2.45590000	-7.09474500	1.37413500
Н	2.36543300	-5.09235900	0.61463900
С	1.76743900	-8.13031800	2.00491600
Н	-0.10225300	-8.73157000	2.88718500
Н	3.48524800	-7.23599600	1.06399200
С	0.10566800	2.68949500	-1.02361000
С	-3.52623100	-0.63335600	0.31933300
С	-4.34655000	-0.27438700	1.42480900
С	-4.11075300	-1.00202500	-0.96428600
С	-5.77938000	-0.28269800	1.24465200
С	-3.82069000	0.08832500	2.67995800
С	-5.46210500	-1.00534100	-1.11762500
Н	-3.44686500	-1.27083900	-1.77678700
С	-6.31803600	-0.64453600	-0.01500700
С	-6.59749000	0.07251900	2.33469700
С	-4.68226400	0.44630900	3.77695500
Н	-2.74755200	0.09819600	2.81929700
Н	-5.90863600	-1.27889400	-2.06626600
Н	-7.39332600	-0.64947500	-0.14828900
С	-6.03653900	0.43882000	3.60888600
Н	-7.67409700	0.06889800	2.20748600
Н	-4.23875200	0.71861700	4.72713900
Н	-6.70120600	0.70516500	4.42210800
С	0.88187000	3.83955900	-1.55015300
С	0.30005100	5.11276400	-1.66122200
С	2.21827800	3.68659400	-1.95330600
С	1.02651600	6.19145200	-2.15876300
Н	-0.72245700	5.26496100	-1.33526700
С	2.94555100	4.76614500	-2.44789400
Н	2.68589900	2.71001800	-1.90062900
С	2.35324000	6.02398100	-2.55395200
Н	0.55746400	7.16653000	-2.22899200
Н	3.97410200	4.62167000	-2.75920500
S	0.77062900	-0.43363400	1.48168900
Н	2.25900900	-9.07746700	2.19531600
Н	2.91905500	6.86412000	-2.93995700

S18 Coordinates of the optimized geometries of molecule 4

C	-1.52356100	-4.34570800	0.79020500
С	-2.16501700	-3.14611400	0.50232300
С	-1.50953300	-1.91711100	0.65648500

С	-0.18184100	-1.94670100	1.11938100
С	0.46710000	-3.15151600	1.36546000
С	-0.19062400	-4.38089300	1.21706700
С	-0.07948600	0.63190900	0.29320900
С	-1.41611900	0.43467800	-0.09707500
С	-1.98501700	1.38931700	-0.95083900
Н	-3.01117100	1.27950300	-1.27113400
С	-1.25273900	2.48372700	-1.39731100
С	0.65981200	1.70558700	-0.19044400
Н	-2.06838600	-5.27063100	0.64349500
Н	-3.18781300	-3.16921600	0.15454400
Н	1.48963900	-3.12545200	1.72353500
Н	-1.73290900	3.18831200	-2.06579100
Н	1.68584300	1.81842300	0.13969500
N	-2.14957500	-0.68501700	0.36998700
С	0.50275100	-5.66153300	1.50289700
С	-0.18280200	-6.73900800	2.08684600
С	1.86246100	-5.83187300	1.19629100
С	0.46660300	-7.94187600	2.35209700
Н	-1.22696200	-6.62768400	2.35572000
С	2.51244900	-7.03375600	1.46456400
Н	2.41068600	-5.02508600	0.72336300
С	1.81768900	-8.09523700	2.04319600
Н	-0.08228100	-8.75748800	2.80948000
н	3.56134200	-7.14350800	1.21265600
C	0.08868500	2.66437500	-1.03929800
С	-3.58375200	-0.66406700	0.25685900
С	-4.35414500	-0.26867300	1.39346900
С	-4.20577500	-1.01612900	-0.91935700
С	-5.78174100	-0.24536400	1.28611300
С	-3.76914800	0.10438300	2.63151200
С	-5.61265300	-0.99667700	-1.03521600
Н	-3.60884700	-1.31364600	-1.77281400
С	-6.35491600	-0.61938200	0.04768300
С	-6.56813700	0.14365200	2.40004900
С	-4.55481000	0.47756100	3.69613500
Н	-2.69086100	0.09011900	2.72389600
Н	-6.10282500	-1.27334400	-1.95955300
С	-5.96408900	0.49808500	3.58187500
Н	-7.64599900	0.15610500	2.30290000
Н	-4.09108700	0.75949700	4.63431900
Н	-6.56752000	0.79494200	4.43154400
С	0.87779700	3.82043500	-1.53258000
С	0.28353900	5.08209300	-1.69678500
С	2.23898800	3.68504600	-1.84980800
С	1.02213900	6.16666300	-2.16266300
Н	-0.75959100	5.22107800	-1.43705900
С	2.97822500	4.77055700	-2.31260300
Н	2.71809900	2.71728100	-1.75514000
С	2.37347300	6.01676900	-2.47217000
Н	0.54272200	7.13269800	-2.27507200
Н	4.02639600	4.63966700	-2.55732500
S	0.64267800	-0.42146800	1.53838300
F	-7.70557300	-0.59653900	-0.05129300

Н	2.32334800	-9.03122300	2.25105200
Н	2.94867100	6.86150500	-2.83346000

С	-1.60582700	-4.28823300	1.17780100
С	-2.16488600	-3.09877900	0.77288700
С	-1.36145500	-1.98797400	0.42735400
С	0.04468100	-2.15679800	0.51629400
С	0.59611400	-3.37374500	0.92713900
С	-0.20521900	-4.46025500	1.26389900
С	0.14712600	0.43966200	-0.31226700
С	-1.26912100	0.35205300	-0.31901400
С	-1.98241200	1.51226300	-0.69837300
Н	-3.05996100	1.46896500	-0.72174000
С	-1.33002600	2.67218600	-1.04514300
С	0.79394500	1.62597500	-0.66984900
Н	-2.26231700	-5.11620800	1.41216300
Н	-3.23675500	-2.99998900	0.70306200
Н	1.67365700	-3.45330200	1.00309700
Н	-1.92006600	3.52731700	-1.34843000
Н	1.87588100	1.65572700	-0.62935300
N	-1.96562500	-0.80233500	0.02241800
С	0.38523300	-5.74744800	1.69472500
С	-0.25065800	-6.53649600	2.66691000
С	1.59217500	-6.20832700	1.14419100
С	0.30609300	-7.74346800	3.07868900
Н	-1.17177500	-6.19333100	3.12286900
С	2.14448500	-7.41792700	1.55367200
Н	2.08810800	-5.63154700	0.37231500
С	1.50479400	-8.18949000	2.52338800
Н	-0.19437900	-8.33308400	3.83804000
Н	3.07144000	-7.76173100	1.10946300
С	0.08104500	2.76099200	-1.04366400
С	-3.41930700	-0.76482800	-0.03982800
С	-4.14097400	-0.36479100	1.12241600
С	-4.04166900	-1.12902600	-1.25314600
С	-5.58643000	-0.33980100	1.02497500
С	-3.54663300	0.00467100	2.34964800
С	-5.42534400	-1.10150400	-1.33472500
Н	-3.44011600	-1.42449500	-2.10343600
С	-6.15441500	-0.71398000	-0.21206900
С	-6.34917400	0.05028900	2.15071200
С	-4.33614800	0.38858000	3.45492600
Н	-2.46806400	-0.00620200	2.44672200
Н	-5.94596300	-1.37251000	-2.24472700
С	-5.71859100	0.41028800	3.35423900
Н	-7.42830700	0.06649600	2.06980500
Н	-3.85094400	0.66667900	4.38421600
Н	-6.32252000	0.70610800	4.20571000
С	0.77216600	4.01260400	-1.42711800
С	0.21325900	5.26310000	-1.11701100
С	2.00010200	3.97976000	-2.10790700
C	0.86439400	6.44078400	-1.47112700

Н	-0.72266700	5.31666800	-0.57371600
С	2.64706300	5.15845900	-2.46538700
Н	2.43916900	3.02813400	-2.38341800
С	2.08283400	6.39350800	-2.14738700
Н	0.42180800	7.39605400	-1.21362400
Н	3.58897200	5.11214600	-2.99962600
S	1.18428000	-0.88851600	0.14236800
F	-7.53121000	-0.69136600	-0.30733100
Н	1.93618300	-9.13114400	2.84247500
Н	2.58778000	7.31121000	-2.42567800

С	-1.60591300	-4.28826100	1.17799500
С	-2.16498600	-3.09869500	0.77342300
С	-1.36157100	-1.98792100	0.42778600
С	0.04456200	-2.15687200	0.51628100
C	0.59601700	-3.37396500	0.92670000
С	-0.20529800	-4.46045000	1.26356800
C	0.14701600	0.43956700	-0.31229300
C	-1.26922900	0.35207100	-0.31871000
C	-1.98250800	1.51228300	-0.69805900
Н	-3.06006900	1.46905500	-0.72121100
С	-1.33011500	2.67212700	-1.04508100
С	0.79384800	1.62578800	-0.67018900
Н	-2.26244400	-5.11617700	1.41245800
Н	-3.23687000	-2.99980200	0.70393600
Н	1.67358500	-3.45364200	1.00220700
Н	-1.92018700	3.52725500	-1.34831900
Н	1.87580300	1.65541700	-0.63001700
Ν	-1.96575700	-0.80221000	0.02301800
С	0.38518000	-5.74778600	1.69391600
С	-0.25048000	-6.53701600	2.66610100
С	1.59191600	-6.20863600	1.14291500
C	0.30629400	-7.74413400	3.07742800
Н	-1.17143300	-6.19390700	3.12243100
C	2.14425600	-7.41837500	1.55194700
Н	2.08767800	-5.63173700	0.37101700
C	1.50479500	-8.19012300	2.52166900
Н	-0.19401500	-8.33388600	3.83678000
Н	3.07105600	-7.76213300	1.10737800
C	0.08096200	2.76083300	-1.04393100
С	-3.41944300	-0.76454800	-0.03885700
С	-4.14077400	-0.36427900	1.12353200
С	-4.04215900	-1.12881300	-1.25195400
С	-5.58627300	-0.33914900	1.02640100
С	-3.54610300	0.00525900	2.35053700
С	-5.42583300	-1.10116600	-1.33323800
Н	-3.44079000	-1.42446000	-2.10231800
С	-6.15458400	-0.71340100	-0.21041100
С	-6.34869300	0.05117600	2.15231600
С	-4.33529800	0.38941000	3.45599200
Н	-2.46751100	-0.00571400	2.44736300
Н	-5.94673300	-1.37222700	-2.24305800

С	-5.71776100	0.41124800	3.35561100
Н	-7.42784400	0.06750100	2.07169400
Н	-3.84981300	0.66757100	4.38511200
Н	-6.32146900	0.70724200	4.20718400
С	0.77208300	4.01235400	-1.42764700
С	0.21335300	5.26290700	-1.11746300
С	1.99982600	3.97938900	-2.10877100
C	0.86447900	6.44052900	-1.47181300
Н	-0.72242100	5.31658700	-0.57391600
С	2.64677600	5.15802200	-2.46649300
Н	2.43876200	3.02772500	-2.38436600
C	2.08273300	6.39313300	-2.14839900
Н	0.42201400	7.39583600	-1.21423700
Н	3.58853500	5.11159600	-3.00098500
S	1.18418400	-0.88859000	0.14239300
F	-7.53139000	-0.69065400	-0.30538000
Н	1.93620700	-9.13188500	2.84040600
Н	2.58767400	7.31078000	-2.42688000

T_{CT-Phen} geometry (Å) (B3LYP/6-311G(d,p))

С	-1.63057600	-4.30987700	1.17523700
С	-2.19309600	-3.11731900	0.80373400
С	-1.40480300	-1.97545200	0.49350700
С	0.02811600	-2.13147100	0.61564900
C	0.57975100	-3.35389400	0.98427700
C	-0.19986900	-4.48278200	1.26541700
C	0.13044900	0.47656400	-0.21822900
C	-1.31179400	0.38192200	-0.25988400
C	-2.00931100	1.54495800	-0.68629200
Н	-3.08866200	1.52539000	-0.73160900
C	-1.35444200	2.68828200	-1.06204400
C	0.77646500	1.64329000	-0.61468400
Н	-2.28733600	-5.14751300	1.36773400
Н	-3.26903100	-3.05079600	0.73026500
Н	1.65770900	-3.40868500	1.08295400
Н	-1.94492800	3.52707000	-1.40542100
Н	1.85769600	1.66795700	-0.54266500
N	-1.98816200	-0.77858100	0.09582200
C	0.39916400	-5.76416000	1.64085600
C	-0.33911400	-6.73941700	2.35139700
C	1.73781900	-6.08486900	1.31315800
C	0.23081700	-7.95268000	2.71912800
Н	-1.36113600	-6.53432100	2.64467900
C	2.30239700	-7.29800100	1.68243900
Н	2.33358400	-5.38709200	0.73713100
С	1.55556600	-8.24493600	2.38996900
Н	-0.36195700	-8.67316300	3.27226500
Н	3.32906900	-7.51354900	1.40705800
С	0.08582400	2.77776700	-1.05721700
C	-3.43679400	-0.73934400	0.03937100
C	-4.17148700	-0.34081000	1.19309300
C	-4.06915100	-1.08756900	-1.12817600
C	-5.60023600	-0.31006000	1.10914300

С	-3.56024100	0.02696600	2.41975600
С	-5.47733400	-1.05971200	-1.21780700
H	-3.48242700	-1.38613300	-1.98785600
C	-6.19694600	-0.67932200	-0.12009600
C	-6.36407400	0.08190500	2.23771300
C	-4.32540700	0.40288200	3.49803200
H	-2.48088000	0.00885000	2.49920800
H	-5.98569500	-1.33225400	-2.13324400
C	-5.73656300	0.43115000	3.40846500
H	-7.44330900	0.10055200	2.15994900
H	-3.84367100	0.68103000	4.42801000
H	-6.32262100	0.73020900	4.26928200
C	0.78387700	3.99264800	-1.48224500
С	0.13901500	5.25116600	-1.47188800
C	2.12863800	3.96295700	-1.92004800
С	0.80304700	6.40750200	-1.86466800
H	-0.88378900	5.33034600	-1.12501200
C	2.78755100	5.12041900	-2.31170500
H	2.65423400	3.01764900	-1.98189600
С	2.13225700	6.35513900	-2.28770400
H	0.28069100	7.35757500	-1.83451700
H	3.81623700	5.05940400	-2.64995000
S	1.13152800	-0.79156500	0.44019900
F	-7.54758200	-0.64851500	-0.19411300
H	1.99735500	-9.19273000	2.67453000
H	2.64739600	7.25707200	-2.59695700

T_{CT-Naph} geometry (Å) (B3LYP/6-311G(d,p))

С	-1.53626000	-4.29208300	0.87065700
С	-2.16115100	-3.07852600	0.60645200
С	-1.46954100	-1.86570700	0.72538000
С	-0.12220500	-1.92231500	1.12153100
С	0.50730000	-3.14177000	1.34548200
С	-0.18636400	-4.35558900	1.23679400
С	-0.01720800	0.65800000	0.28971600
С	-1.37684300	0.48764100	-0.02581000
С	-1.98301400	1.46655900	-0.82454900
Н	-3.03017200	1.38220900	-1.08039500
С	-1.26150900	2.55644400	-1.29902200
C	0.70704000	1.72972800	-0.22013700
Н	-2.10823500	-5.20467400	0.75371500
Н	-3.19938600	-3.07903900	0.30394200
Н	1.54633800	-3.13946500	1.65355800
Н	-1.77014500	3.28033600	-1.92428900
Н	1.75192600	1.82449500	0.05128800
Ν	-2.10454900	-0.62425500	0.46696100
С	0.48882300	-5.65091800	1.49937100
С	-0.19294300	-6.70555900	2.12765600
С	1.82643500	-5.85817900	1.12585800
С	0.43888300	-7.92227100	2.37133600
Н	-1.21898100	-6.56533300	2.44791600
С	2.45893300	-7.07398400	1.37231900
Н	2.36984500	-5.06954400	0.61805900

С	1.76817400	-8.11252000	1.99565900
Н	-0.10613400	-8.71977800	2.86390400
Н	3.49053300	-7.21254100	1.06855400
С	0.10177600	2.70951400	-1.02035600
С	-3.52829800	-0.62369300	0.30816100
С	-4.35260500	-0.31019500	1.42560100
С	-4.10430700	-0.96322000	-0.98835100
С	-5.78567300	-0.33229300	1.25715700
С	-3.83227000	0.02574800	2.68980700
С	-5.45407100	-0.98477600	-1.14539900
Н	-3.43925500	-1.20125000	-1.80837700
С	-6.28095600	-0.66694800	-0.02017200
С	-6.61768200	-0.02386500	2.34696500
С	-4.70001900	0.33673200	3.79526200
Н	-2.75939600	0.05165000	2.82649200
Н	-5.92577300	-1.23516800	-2.08706800
С	-6.05436000	0.31284400	3.62837700
Н	-7.69166900	-0.04040000	2.21757700
Н	-4.26097200	0.58815000	4.75307100
Н	-6.72082300	0.54491400	4.45041500
С	0.87938500	3.86032100	-1.54331100
С	0.29907900	5.13449400	-1.65047900
С	2.21559800	3.70670200	-1.94667000
С	1.02704100	6.21375800	-2.14455300
Н	-0.72326700	5.28700600	-1.32418000
С	2.94429400	4.78681300	-2.43792900
Н	2.68192600	2.72936100	-1.89680300
С	2.35357000	6.04570100	-2.54012700
Н	0.55931200	7.18966900	-2.21180400
Н	3.97268300	4.64199500	-2.74957600
S	0.76181900	-0.41599300	1.48218700
F	-7.62157400	-0.69386800	-0.20745900
Н	2.26021300	-9.05931100	2.18660100
Н	2.92051300	6.88629300	-2.92347300

T_{LE-Naph} geometry (Å) (B3LYP/6-311G(d,p))

С	-1.62981300	-4.29606500	1.26369600
С	-2.19145000	-3.10447400	0.90631900
С	-1.40484700	-1.97207200	0.54992900
С	0.03740000	-2.13884000	0.63865600
С	0.59054200	-3.35994100	0.98567200
С	-0.18526700	-4.49305200	1.29019000
С	0.11957400	0.46786100	-0.18892600
С	-1.30674000	0.36549700	-0.25434400
С	-2.00565300	1.50956200	-0.72336000
Н	-3.08269800	1.47673600	-0.79843600
С	-1.34950300	2.65291000	-1.10246600
С	0.76693900	1.64099900	-0.58515900
Н	-2.29006400	-5.11914000	1.49810600
Н	-3.26903300	-3.02550600	0.87928900
Н	1.67057200	-3.41573600	1.05420600
Н	-1.93560500	3.48191200	-1.47777200
Н	1.84672000	1.67776200	-0.49563800

C 0.41075300 -5 7723	
0.11010000 0.1120	38400 1.62894100
C -0.34551900 -6.8041	2.24736100
C 1.77667200 -6.0625	52900 1.36321000
C 0.22714600 -8.0236	0800 2.58372300
Н -1.38647600 -6.6386	31100 2.49324000
C 2.33993600 -7.2825	50400 1.70091800
Н 2.39577000 -5.3304	12300 0.85941700
C 1.57408600 -8.2804	2.31699200
Н -0.38332600 -8.7812	29500 3.06370400
Н 3.38462700 -7.4661	1.47313100
C 0.07414800 2.7550	9300 -1.05415300
C -3.43566400 -0.7493	0.05732500
C -4.17487200 -0.3031	1.19018000
C -4.06120200 -1.1507	70200 -1.09664900
C -5.60323600 -0.2767	1.09760200
C -3.56955400 0.1146	2.40363500
C -5.46874500 -1.1272	20800 -1.19405200
Н -3.47015900 -1.4862	25700 -1.93952200
C -6.19367100 -0.6990	-0.11733900
C -6.37268000 0.1624	1900 2.20486600
C -4.34032700 0.5350	3.46140500
Н -2.49071400 0.0985	56600 2.49048700
Н -5.97257300 -1.4392	25800 -2.09928400
C -5.75097100 0.5602	3.36307000
Н -7.45148700 0.1776	55300 2.12093700
Н -3.86340100 0.8506	64300 4.38181300
Н -6.34131700 0.8951	4.20761200
C 0.77468700 3.9814	l2800 -1.47591900
C 0.15577000 5.2429	93700 -1.37363600
C 2.08436300 3.9383	39600 -1.99386400
C 0.81728600 6.4031	-1.76327800
Н -0.84255500 5.3207	-0.95986300
C 2.74415000 5.0995	51200 -2.38078400
Н 2.58124900 2.9837	7300 -2.12088500
C 2.11597100 6.3410	-2.26869900
Н 0.31837100 7.3609	94900 -1.66435200
Н 3.74908200 5.0339	94300 -2.78301900
S 1.13044000 -0.7925	0.47340600
F -7.54366700 -0.6714	-0.19948500
Н 2.01704700 -9.2346	3300 2.57672200

S19 Coordinates of the optimized geometries of molecule 5

Ν	-4.94538600	0.26004500	0.07570100
Ν	4.94547900	0.25983700	-0.07582500
0	-0.00064400	-4.17885400	0.00005300
0	0.00014400	4.31651700	0.00022000
С	0.02019000	-2.18293300	1.26947300
С	0.03992500	-2.90120100	2.47826900
Н	0.03949100	-3.98255500	2.42266800

С	0.05872600	-2.23950100	3.69211100
Н	0.07382700	-2.79789300	4.62089300
С	0.05798300	-0.83995900	3.70928200
С	0.03896000	-0.12492200	2.52126800
Н	0.03875400	0.95824600	2.54880700
С	0.01992900	-0.78180600	1.28325800
С	0.00004800	0.06304700	0.00003200
С	-0.01990500	-0.78181100	-1.28317700
С	-0.02061400	-2.18293000	-1.26938700
С	-0.00037000	-2.95442800	0.00004900
С	-0.04049300	-2.90121400	-2.47817600
Н	-0.04039600	-3.98256500	-2.42254500
С	-0.05900000	-2.23952500	-3.69202200
Н	-0.07421200	-2.79791300	-4.62080600
С	-0.05780100	-0.83997800	-3.70920700
С	-0.03863100	-0.12493400	-2.52120700
Н	-0.03805700	0.95823400	-2.54875400
С	-1.28962900	0.91272400	0.01919400
С	-2.51136000	0.24640800	0.04175500
Н	-2.50265700	-0.83364600	0.06062800
С	-3.74524800	0.93308100	0.06007000
С	-3.69043900	2.35345200	0.05995000
Н	-4.59868700	2.93894200	0.05671700
С	-2.47953200	3.00684400	0.04365600
Н	-2.44110900	4.08943100	0.03879500
С	-1.25643900	2.31448500	0.02159700
С	0.00010900	3.08487200	0.00012200
С	1.25662100	2.31442100	-0.02146900
С	1.28974200	0.91266700	-0.01912700
С	2.51144500	0.24628700	-0.04174400
Н	2.50267700	-0.83376600	-0.06064000
C	3.74536000	0.93290500	-0.06009400
C	3.69061700	2.35328000	-0.05993600
Н	4.59890500	2.93871500	-0.05673600
C	2.47974900	3.00673100	-0.04355300
Н	2.44136600	4.08932000	-0.03862300
C	-5.01791900	-1.19706500	-0.04016400
Н	-5.97114500	-1.43775700	-0.51831100
Н	-4.24465600	-1.54456600	-0.72868100
C	-4.91469400	-1.93390900	1.30037100
Н	-3.96370800	-1.72814400	1.79568800
Н	-4.99252300	-3.01388000	1.14597200
Н	-5.71886800	-1.62983200	1.97571000
C	-6.22274600	0.96054900	0.21284000
Н	-6.91483000	0.27899100	0.71451100
Н	-6.10063100	1.80970900	0.88864800
С	-6.82760600	1.41741200	-1.11983400
Н	-6.16794500	2.11811800	-1.63594500
Н	-7.78853100	1.91212100	-0.95107700
H	-6.99797800	0.56562600	-1.78345200
C	5.01798200	-1.19726500	0.04009700
H	5.97128700	-1.43796200	0.51808300
H	4.24482600	-1.54471600	0.72876800
С	4.91451500	-1.93418700	-1.30038700

Н	3.96378200	-1.72779200	-1.79592000
Н	4.99154600	-3.01419300	-1.14584300
Н	5.71905200	-1.63076800	-1.97559400
С	6.22283400	0.96029200	-0.21318900
Н	6.10059400	1.80951800	-0.88887900
Н	6.91478200	0.27876700	-0.71510300
С	6.82802700	1.41701300	1.11938000
Н	6.16875400	2.11809900	1.63547600
Н	7.78917700	1.91123700	0.95048300
Н	6.99804400	0.56522300	1.78308400
Н	0.07251200	-0.30811000	4.65404700
Н	-0.07210400	-0.30813700	-4.65398100

N	-5.01067100	0.05067000	0.08498200
Ν	4.80229500	0.49836400	-0.05979600
0	1.30641300	-3.99272500	-0.04673200
0	-0.26114100	4.31173500	-0.00594300
С	0.46346800	-2.15752100	1.22026700
С	0.61467100	-2.86338200	2.43953000
Н	0.97592700	-3.88212800	2.37206200
С	0.30680200	-2.28092000	3.65659500
Н	0.42981400	-2.84943200	4.57332000
С	-0.16658500	-0.96508900	3.70819800
С	-0.31603300	-0.25321400	2.51453500
Н	-0.67640300	0.76934300	2.55678400
С	-0.00970200	-0.82296700	1.28080100
С	-0.09422100	0.04458700	-0.00223900
С	-0.04544100	-0.80712400	-1.29803800
С	0.42933000	-2.14200900	-1.26673300
С	0.79000800	-2.83279300	-0.03221600
С	0.54563100	-2.83325000	-2.49809600
Н	0.90852700	-3.85253600	-2.45283400
С	0.20256900	-2.23666500	-3.69900900
Н	0.29893600	-2.79444500	-4.62545900
С	-0.27277900	-0.92087100	-3.72122100
С	-0.38770900	-0.22323800	-2.51563700
Н	-0.75036600	0.79914000	-2.53569100
С	-1.39993700	0.84603600	0.01911000
С	-2.58820900	0.13553700	0.04090700
Н	-2.52672000	-0.94166000	0.05463700
С	-3.85255000	0.77228800	0.06592900
C	-3.86961200	2.20157000	0.06807500
Н	-4.80480600	2.74185900	0.06934900
C	-2.69418700	2.90344600	0.04626000
Н	-2.70002200	3.98633100	0.04034000
C	-1.43870600	2.25544800	0.02188100
C	-0.23123000	3.08264000	-0.00264600
С	1.06565600	2.35862300	-0.02255900
С	1.14413000	0.95367400	-0.01512000
С	2.39491200	0.36016600	-0.02593000
Н	2.44531200	-0.71582000	-0.03297400
С	3.59354400	1.12021800	-0.05085000

С	3.48839200	2.54825400	-0.06444300
Н	4.37043800	3.17072900	-0.06850300
С	2.25165600	3.13050600	-0.04661800
Н	2.14323000	4.20743800	-0.04565500
С	-5.01941300	-1.41569300	-0.01482100
Н	-5.96126300	-1.69480700	-0.49248400
Н	-4.22817400	-1.73441500	-0.69349000
С	-4.89202800	-2.11871400	1.34036800
Н	-3.94728300	-1.87458000	1.82902600
Н	-4.93230900	-3.20167300	1.20017500
Н	-5.70750300	-1.83231500	2.00957500
С	-6.32650000	0.68599600	0.21965400
Н	-6.97441000	-0.02978200	0.73024400
Н	-6.24603700	1.54767700	0.88344200
С	-6.95057500	1.08733200	-1.12116600
Н	-6.33335400	1.82152000	-1.64283200
Н	-7.93919200	1.52383100	-0.95646600
Н	-7.06798800	0.21942800	-1.77439300
С	4.93849100	-0.96679400	0.05756600
Н	5.90109000	-1.14848200	0.53818900
Н	4.17417100	-1.34480200	0.73330700
С	4.87783800	-1.68316600	-1.29518000
Н	3.91548600	-1.52991100	-1.78474000
Н	5.00423400	-2.75518500	-1.13457200
Н	5.66986900	-1.33776100	-1.96393600
С	6.06645000	1.23923100	-0.18845900
Н	5.91535100	2.09502400	-0.84480200
Н	6.76677900	0.57489200	-0.69698800
С	6.64053700	1.67373700	1.16444300
Н	5.96545200	2.35805300	1.68124500
Н	7.59445800	2.18177700	1.00718800
Н	6.81661800	0.81329300	1.81310000
Н	-0.41046900	-0.49805400	4.65519900
Н	-0.54494800	-0.44313900	-4.65509100

N	-4.90575700	0.31121600	0.07315400
N	4.94209500	0.22919900	-0.07608700
0	-0.21443400	-4.21599700	0.00258600
0	0.05268200	4.32657100	0.00431800
С	-0.06703900	-2.20157000	1.25167300
С	-0.07211800	-2.91456400	2.47834600
Н	-0.13812100	-3.99458500	2.43527500
C	0.00318400	-2.25277900	3.68982700
Н	-0.00678700	-2.81955500	4.61506100
С	0.09157200	-0.85603100	3.72299100
С	0.09935000	-0.14562800	2.52356000
Н	0.17080200	0.93677300	2.55153700
С	0.02167400	-0.78920900	1.28881900
C	0.01700600	0.06429500	0.00105000
C	-0.01505100	-0.78807300	-1.28702500
C	-0.10289600	-2.20055900	-1.24879600
С	-0.14494200	-2.92902000	0.00193300
С	-0.14296500	-2.91225800	-2.47561100
---------	-------------	-------------	--------------
Н	-0.20788200	-3.99227200	-2.43185500
С	-0.10184400	-2.24931500	-3.68804800
Н	-0.13816000	-2.81517200	-4.61318700
С	-0.01461000	-0.85250100	-3.72234200
С	0.02729000	-0.14329100	-2.52286400
Н	0.09766800	0.93915800	-2.55180400
С	-1.25550100	0.92828100	0.01902200
С	-2.48024400	0.27465400	0.03814900
Н	-2.47716400	-0.80483800	0.05322200
С	-3.70947500	0.97628800	0.05880400
С	-3.65184600	2.40160400	0.06247500
Н	-4.55726300	2.99067100	0.06141500
C	-2.43885900	3.04197900	0.04537700
Н	-2.38753500	4.12375200	0.04154000
C	-1.21987500	2.33255200	0.02319400
C	0 04071500	3 09588200	0 00333600
C	1 28911500	2 31034200	-0.01820700
C	1 30223100	0 90469500	-0.01640500
C	2 51557900	0.23088600	-0.03787500
н	2.01007000	-0.84846700	-0.05466100
C	3 75548000	0 91144100	-0.05914700
C	3 72081000	2 33831000	-0.059914700
u u	4 63611500	2.33031000	-0.05994000
11 C	4.03011300	2.91190400	-0.03094000
U U	2.31927800	2.99970100	-0.04020800
n C	2.40019400	4.06220300	-0.03434200
U U	-4.90019100	-1.15065400	-0.03433400
п u	-5.94209200	-1.30002300	-0.51475000
H C	-4.21251400	-1.50644800	-0.71341800
U U	-4.89874200	-1.80883500	1.31002200
	-3.94406500	-1.0/40/800	1.80836800
H T	-4.99203700	-2.94763200	1.16880000
H	-5.70017000	-1.54662500	1.98637200
C	-6.18630800	1.01416400	0.20181500
H 	-6.87559000	0.33282900	0.70570900
H	-6.06371000	1.86899900	0.86822100
C	-6.77979300	1.45262100	-1.14180500
H	-6.11986600	2.15263700	-1.65789500
H 	-7.74380100	1.94264500	-0.98143300
H	-6.94118000	0.59386700	-1.79779400
C	5.00161100	-1.23389400	0.02824200
H	5.95284600	-1.48049500	0.50550300
Н	4.22194800	-1.57819200	0.70855700
С	4.89705400	-1.94766500	-1.32411500
Н	3.94535500	-1.73523800	-1.81416000
Н	4.97170400	-3.02834600	-1.17906700
Н	5.70296300	-1.63830100	-1.99454600
C	6.23306300	0.91235000	-0.20769600
Н	6.12218300	1.76954100	-0.87313800
Н	6.91011100	0.22100000	-0.71459500
С	6.83802200	1.34023100	1.13415700
Н	6.19106500	2.05024800	1.65308700
Н	7.80919500	1.81503000	0.97109600
Н	6.98792100	0.47852600	1.78904500

Н	0.15269200	-0.32797300	4.66745800
Н	0.01940200	-0.32346800	-4.66763000

S20 Frequencies of all geometries of molecule 5 computed at (B3LYP/6-311G(d,p)) level of theory

molecule-3			
ω_{S_0}	$\omega_{ m S_{CT}}$	$\omega_{\mathrm{T}_{\mathrm{CT}}}$	
11.11	14.76	10.52	
21.63	25.21	12.58	
29.42	25.94	28.70	
29.94	31.69	29.15	
35.18	36.08	35.76	
56.08	53.84	56.08	
56.99	56.94	56.57	
57.97	62.22	61.71	
61.75	65.73	63.96	
75.78	75.10	75.59	
84.56	84.64	85.51	
87.90	89.31	87.70	
100.00	104.49	105.19	
114.30	114.66	114.21	
115.03	120.35	118.26	
119.56	127.69	125.72	
125.31	135.51	127.73	
129.69	148.26	140.86	
169.35	165.40	168.10	
181.89	185.63	181.53	
202.23	197.04	202.03	
215.80	209.24	214.49	
217.02	215.16	216.85	
218.03	219.45	218.76	
221.43	219.57	222.30	
237.63	239.03	236.67	
241.93	241.80	237.08	
260.18	259.51	258.69	
270.76	276.61	273.06	
281.50	281.11	276.97	
287.68	287.65	284.65	

molecule-3			
ω_{S_0}	$\omega_{\mathrm{S}_{\mathrm{CT}}}$	$\omega_{\mathrm{T}_{\mathrm{CT}}}$	
295.90	288.70	291.84	
307.18	310.66	308.70	
341.21	322.72	320.12	
343.17	341.42	341.86	
343.53	343.62	342.16	
350.28	345.69	346.53	
370.33	369.36	372.25	
377.28	383.23	377.35	
414.67	395.77	383.44	
424.85	427.66	424.08	
426.98	431.14	430.42	
427.37	440.68	434.78	
460.21	452.28	453.51	
461.59	466.80	460.80	
469.94	474.52	473.21	
481.99	485.58	482.87	
484.10	486.58	483.53	
507.42	513.72	504.94	
527.91	535.51	528.47	
540.81	545.38	537.47	
545.30	555.04	547.85	
559.36	566.01	550.78	
582.04	579.48	575.26	
584.11	582.02	577.34	
586.10	590.17	586.32	
642.56	626.34	587.65	
644.66	636.70	631.97	
645.50	641.12	634.14	
654.33	648.99	647.44	
680.46	649.89	649.30	
682.38	666.59	672.76	
697.33	676.89	676.43	
711.03	698.12	696.35	
712.40	707.01	708.25	
725.66	712.80	712.14	
744.63	741.85	739.47	
751.65	744.88	744.06	
774.03	747.21	748.47	
782.62	757.15	759.56	
787.08	772.55	770.21	
788.69	780.72	770.74	
793.32	788.58	785.56	
795.43	794.57	793.02	

molecule-3			
ω_{S_0}	$\omega_{ m S_{CT}}$	$\omega_{\mathrm{T}_{\mathrm{CT}}}$	
797.06	798.81	798.23	
801.10	804.07	799.21	
821.46	808.49	802.96	
831.47	824.69	817.45	
841.32	828.12	827.15	
852.28	852.00	849.26	
855.70	872.43	864.00	
863.63	875.29	866.07	
889.03	882.39	867.76	
903.64	887.81	879.48	
916.89	900.39	896.83	
917.57	900.66	912.67	
928.35	914.80	921.94	
930.27	930.30	925.14	
941.70	931.40	932.03	
944.09	932.71	932.32	
946.20	932.95	940.50	
953.09	936.73	941.61	
991.49	947.20	944.64	
991.84	950.93	948.43	
998.84	987.78	981.60	
1000.02	990.75	982.11	
1001.89	996.70	997.50	
1014.89	1006.23	1002.96	
1015.47	1012.74	1005.59	
1021.86	1015.27	1016.15	
1038.48	1029.56	1032.55	
1058.13	1049.31	1047.46	
1067.28	1053.89	1059.84	
1085.34	1071.94	1080.99	
1085.35	1076.30	1081.22	
1094.85	1082.04	1086.23	
1094.98	1089.40	1087.58	
1104.16	1098.58	1098.64	
1112.28	1101.91	1103.64	
1112.44	1108.80	1110.47	
1112.85	1111.46	1110.84	

molecule-3			
ω_{S_0}	$\omega_{\mathrm{S}_{\mathrm{CT}}}$	$\omega_{T_{CT}}$	
1121.77	1119.53	1124.26	
1135.01	1123.30	1128.19	
1171.05	1130.28	1157.38	
1172.05	1155.64	1157.90	
1175.32	1167.22	1167.10	
1180.87	1173.17	1174.01	
1190.38	1175.21	1174.19	
1192.72	1177.06	1175.97	
1195.81	1187.96	1185.40	
1202.57	1198.88	1195.58	
1218.12	1200.32	1205.41	
1218.29	1210.28	1209.86	
1219.59	1212.65	1212.50	
1231.41	1221.78	1227.91	
1268.56	1256.84	1272.68	
1283.55	1260.59	1273.57	
1294.02	1278.78	1279.65	
1299.94	1279.50	1289.71	
1302.90	1288.02	1291.33	
1314.16	1291.13	1295.32	
1316.67	1315.05	1314.95	
1319.69	1317.29	1315.95	
1330.96	1320.75	1317.79	
1340.24	1322.90	1323.43	
1343.52	1327.94	1324.52	
1353.64	1335.10	1333.46	
1358.07	1362.07	1343.36	
1364.23	1370.43	1360.71	
1381.47	1373.05	1368.75	
1382.64	1378.44	1377.69	
1394.32	1381.12	1379.57	
1395.36	1387.41	1385.46	
1408.53	1410.06	1390.29	
1408.56	1412.13	1408.75	
1411.18	1412.57	1409.05	
1411.22	1414.30	1411.51	
1429.87	1422.50	1412.07	
1434.77	1434.58	1428.87	
1466.45	1437.75	1432.29	
1467.09	1455.72	1445.42	
1475.71	1466.58	1462.30	
1479.05	1477.35	1463.33	

molecule-3			
ω_{S_0}	$\omega_{ m S_{CT}}$	$\omega_{T_{CT}}$	
1489.22	1485.70	1469.84	
1489.23	1485.82	1485.17	
1490.79	1488.30	1488.81	
1490.87	1489.34	1489.19	
1493.10	1489.72	1490.21	
1493.43	1490.64	1490.41	
1498.94	1493.10	1492.93	
1499.07	1493.52	1493.28	
1505.12	1497.94	1498.56	
1511.63	1498.44	1498.68	
1511.78	1513.55	1509.23	
1514.66	1515.48	1512.98	
1525.56	1516.41	1513.75	
1526.65	1525.13	1522.72	
1543.24	1531.64	1527.42	
1548.11	1538.91	1537.23	
1574.72	1541.27	1538.88	
1582.69	1546.01	1551.50	
1602.91	1554.92	1557.24	
1620.18	1560.90	1564.41	
1631.42	1585.61	1578.63	
1638.45	1587.06	1598.62	
1640.00	1614.42	1621.62	
1640.32	1628.43	1625.04	
1688.32	1636.77	1626.02	
1712.85	1688.94	1685.05	
3029.52	3034.72	3034.40	
3029.55	3035.60	3034.78	
3030.18	3042.64	3035.19	
3030.21	3043.40	3035.47	
3039.25	3055.80	3052.59	
3039.27	3061.52	3052.89	
3048.00	3072.61	3059.14	
3048.16	3078.39	3059.71	
3073.65	3090.35	3088.68	
3073.65	3093.27	3089.12	

molecule-3			
ω_{S_0}	$\omega_{\rm S_{CT}}$	$\omega_{\mathrm{T}_{\mathrm{CT}}}$	
3076.24	3103.90	3090.95	
3076.25	3107.23	3091.70	
3094.30	3108.39	3103.10	
3094.32	3109.68	3103.37	
3094.81	3114.08	3105.52	
3094.85	3116.34	3106.29	
3107.01	3119.24	3113.84	
3107.03	3126.60	3114.29	
3109.15	3129.31	3117.72	
3109.23	3138.07	3118.31	
3167.63	3148.19	3154.75	
3167.69	3148.70	3154.79	
3180.49	3157.28	3161.35	
3180.65	3157.91	3161.55	
3189.96	3179.99	3181.99	
3190.35	3180.33	3182.08	
3191.17	3191.31	3193.26	
3191.37	3192.21	3193.54	
3201.60	3195.98	3195.78	
3202.03	3204.68	3196.00	
3210.56	3220.31	3217.66	
3211.01	3227.03	3218.00	
3212.00	3230.60	3220.26	
3212.31	3249.25	3221.29	

Notes and references

- [1] F. Plasser, J. Chem. Phys., 2020, 152, 084108.
- [2] T. Lu and F. Chen, Journal of Computational Chemistry, 2012, 33, 580–592.
- [3] Z. Liu, T. Lu and Q. Chen, Carbon, 2020, 165, 461–467.
- [4] M. Etinski, V. Rai-Constapel and C. M. Marian, J. Chem. Phys., 2014, 140, 114104.
- [5] P. Karak, K. Ruud and S. Chakrabarti, J. Phys. Chem. Lett., 2021, 12, 9768–9773.
- [6] S. M. Sartor, B. G. McCarthy, R. M. Pearson, G. M. Miyake and N. H. Damrauer, J. Am. Chem. Soc., 2018, 140, 4778–4781.
- [7] H. Kim and G. D. Scholes, Phys. Chem. Chem. Phys., 2020, 22, 13292–13298.
- [8] S. M. Sartor, C. H. Chrisman, R. M. Pearson, G. M. Miyake and N. H. Damrauer, J. Phys. Chem. A, 2020, 124, 817–823.
- [9] P. Karak and S. Chakrabarti, Phys. Chem. Chem. Phys., 2020, 22, 24399–24409.
- [10] E. Mihajlo, J. Serb. Chem. Soc., 2011, 76, 1649–1660.
- [11] P. Karak, K. Ruud and S. Chakrabarti, J. Chem. Phys., 2022, 157, 174101.
- [12] P. Karak, T. Moitra, K. Ruud and S. Chakrabarti, Phys. Chem. Chem. Phys., 2023, 25, 8209-8219.