Supplementary Information for

"Influence of temperature on bend, twist and twist-bend coupling of dsDNA"

Zihao Zhang ^{a)}, Xuankang Mou^{a)}, Yahong Zhang ^{a)}, Linli He ^{a)} and Shiben Li^{*, a)}

a) Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China.

*Author to whom correspondence should be addressed.

Electronic addresses: shibenli@wzu.edu.cn (S. Li)

Caption of Fig. S1

(a) The root mean square deviation (RMSD) curve of 29 base fragments in the center of dsDNA sequence at T = 280 K, where the black line represents the average of the relevant parameters every 2 ns.

(b) The root mean square deviation (RMSD) curve of 29 base fragments in the center of dsDNA sequence at T = 290 K, where the black line represents the average of the relevant parameters every 2 ns.

(c) The root mean square deviation (RMSD) curve of 29 base fragments in the center of dsDNA sequence at T = 300 K, where the black line represents the average of the relevant parameters every 2 ns.

(d) The root mean square deviation (RMSD) curve of 29 base fragments in the center of dsDNA sequence at T = 310 K, where the black line represents the average of the relevant parameters every 2 ns.

(e) The root mean square deviation (RMSD) curve of 29 base fragments in the center of dsDNA sequence at T = 320 K, where the black line represents the average of the relevant parameters every 2 ns.

Caption of Fig. S2

(a) Probability distribution $p(\tau)$ of tilt τ at T = 280K, 290K, 300K, 300K and 310K, respectively. (b) Probability distribution $p(\rho)$ of roll ρ at T = 280K, 290K, 300K, 300K and 310K, respectively. (c) Probability distribution $p(\omega)$ of twist ω at T = 280K, 290K, 300K and 310K, respectively.

Caption of Fig. S3

(a) The temperature dependence of tilt modulus $K_{\tau\tau}$. The line is a fitting result with a slope of -0.209 pN·nm/K. (b) The temperature dependence of roll modulus $K_{\rho\rho}$. The line is a fitting result with a slope of -0.072 pN·nm/K. (c) The temperature dependence of twist modulus $K_{\omega\omega}$. The line is a fitting result with a slope of -0.380 pN·nm/K.

Caption of Fig. S4

(a) The standard deviations for cumulative tilt angle and cumulative roll angle, $\sigma_{\tau}\sigma_{\rho}$, as function of temperature *T*. The line is a fitting result with a slope of $0.123 \times 10^{-2} \text{ rad}^2/\text{K}$. (b) The correlation coefficient corr (τ, ρ) as function of temperature *T*, and the line is a fitting result with a slope of 0.282×10^{-2} /K. Here, corr (τ, ρ) denote Pearson correlation coefficient between roll and tilt. (c) The standard deviations for cumulative tilt angle and cumulative twist angle, $\sigma_{\tau}\sigma_{\omega}$, as function of temperature *T*. The line is a fitting result with a slope of $0.058 \times 10^{-2} \text{ rad}^2/\text{K}$. (d) The correlation coefficient corr (τ, ω) as function of temperature *T*, and the line is a fitting result with a slope of 0.218×10^{-2} /K. Here, corr (τ, ω) denote Pearson correlation coefficient between tilt and twist.

Table S1

Table S1 Summary of dsDNA elasticity parameters in the literatures.

Subject		Elastic parameters					
Length	Temperature	K _{SS}	l _B	k _T	l _T	K _{ST}	References
48bp	298 K	1401±313 pN	52.5±12.4 nm				Baumann et al. ¹
16400 nm			49 nm		120 nm		Moroz et al. ²
16.5 µm	298 K	1010 pN	45 nm				Williams et al. ³
69 bp	298 K	1256±217 pN	47±2 nm				Wenner et al. ⁴
1.4 kbp	296 K			$410{\pm}30 \text{ pN}{\cdot}\text{nm}^2$			Bryant et al. ⁵
14.8 kb	296 K	1045±92 pN		$436{\pm}17\ pN{\cdot}nm^2$		-90±10 pN·nm, 0.5±0.1 nm/turn	Gore et al. ⁶
7.4 kbp						0.42±0.2 nm/turn	Lionnet. ⁷
15 bp			11±2 nm				Yuan et al. ⁸
2.2kbp/2.4kbp				90±0.3nm $k_BT/$ 88±4nm k_BT			Forth et al.9
4.2 kbp	296 K	1200 pN	43 nm		100 nm		Sheinin et al. ¹⁰
11 bp	298 K	2399.09±30.27 pN	56.93±5.45 nm		87.93±5.20 nm		Faustino et al. ¹¹
7.9 kb					103±5 nm		Lipfert et al. ¹²
8.4 kb	293 K	1450±50 pN	38±2 nm				Gross et al. ¹³
160 bp	298 K		47.7nm/48.5 nm				Geggier et al. ¹⁴
56 bp	298 K	1518 pN	43 nm				Noy et al. ¹⁵
4.0 kb	296 K	935±121 pN	49±2 nm				Herrero-Galán et al. ¹⁶
38 bp	298 K	955 pN	43 nm				Mogurampelly et al. ¹⁷
3 kbp	298 K		54.7±0.6 nm		100 nm		Chou et al. ¹⁸
4.2 kbp	300 K	1000±200 pN	45±2 nm		109±4 nm	0.44±0.1 nm/turn	Lipfert et al.19
2 kbp			42±1.2 nm				Zhang et al. ²⁰
1201bp/ 2060 bp	298 K		46.2±0.8 nm/ 47.8±0.7 nm				Brunet et al. ²¹
24 bp	300 K	966.4±30.7 pN	45.84±0.88 nm				Garai et al. ²²
2060 bp	298 K	1448±5 pN		399±1 pN·nm ²		-120±1 pN·nm	Snodin et al. ²³
16.5 um	300 K	1760±50 pN	42.5±0.2 nm	*		*	Broekmans et al. ²⁴
25 bp	300 K	Å	50.9 nm				Drozdetski et al.25
20.6 kbp	~ 298 K		43(56) nm		110(110) nm		Nomidis et al. ²⁶
150 bp	295 K				118nm/105 nm		Skoruppa et al. ²⁷
40 bp	298 K	1441 pN				0.61 nm/turn	Bao et al. ²⁸
16 bp	300 K	1280±70 pN		303±23 pN·nm ²			Marin-Gonzalez et al.29
7.9 kb		*		*	103 ± 4 nm		Kriegel et al. ³⁰
12 bp	298 K	1096±32 pN	49.87±0.77 nm				Garai et al. ³¹
30 bp	298 K	1860±41 pN	46.3±0.2 nm		105±2 nm	0.47±0.02 nm/turn	Xiong et al.32
17 bp	298 K	1		420-495 pN·nm ²	102-120 nm		Reymer et al. ³³
2686 bp	298 K		49.3 nm	Å			Schurr et al. ³⁴
100 bp	300 K		39 nm		105 nm		Nomidis et al. ³⁵
16 bp	298 K	834±34 pN				0.59±0.02 nm/turn	Liu et al. ³⁶
104 bp	300 K				118 nm		Caraglio et al. ³⁷
16 bp	310 K	1435±61 pN	39.17±0.82 nm	448±16 pN·nm ²			Chen et al. ³⁸
20 bp	295 K	1336 pN	48 nm	•		0.69±0.17 nm/turn	Fu et al. ³⁹
201	300 K	1150.11+105.08 pN	29.98±2.54 nm				Naskar et al. ⁴⁰

20 bp	298 K		49 nm				Qiang et al.41
N = 200			51.14 nm		219.82 nm		Segers et al.42
32 bp	300 K		42 nm		86 nm		Skoruppa et al.43
100 bp	300 K	1038±21 pN		$386{\pm}3~pN{\cdot}nm^2$		-125±6 pN·nm	Assenza et al.44
~20-30 bp	300 K		58±1 nm				Segers et al.45
16 bp	300 K	1368.6±49.1 pN	57.78±1.39 nm	464.02±10.93			Chhotri et al ⁴⁶
				$pN\cdot nm^2$			Cimetri et al.
13.7 kbp	293 K					0.3 nm/turn	Qiang et al.47
25 bp	295 K					2.8K _B T (deg.nm)	Zhang et al.48
35 bp	300 K	1398.5±25.2 pN	55.14±0.19 nm	$402.2{\pm}7.2\ pN{\cdot}nm^2$	95.6±1.7 nm	-116.7±1.8 pN·nm	Zhang et al.49

References

- 1. C. G. Baumann, S. B. Smith, V. A. Bloomfield and C. Bustamante, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 6185-6190.
- 2. J. D. Moroz and P. Nelson, *Proc. Natl. Acad. Sci. U. S. A.*, 1997, **94**, 14418-14422.
- 3. M. C. Williams, J. R. Wenner, I. Rouzina and V. A. Bloomfield, *Biophys. J.*, 2001, 80, 874-881.
- 4. J. R. Wenner, M. C. Williams, I. Rouzina and V. A. Bloomfield, *Biophys. J.*, 2002, **82**, 3160-3169.
- 5. Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli and C. Bustamante, *Nature*, 2003, 424, 338-341.
- 6. J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli and C. Bustamante, *Nature*, 2006, 442, 836-839.
- 7. T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon and V. Croquette, *Phys. Rev. Lett.*, 2006, 96, 178102.
- 8. C. Yuan, H. Chen, X. W. Lou and L. A. Archer, *Phys. Rev. Lett.*, 2008, **100**, 018102.
- 9. S. Forth, C. Deufel, M. Y. Sheinin, B. Daniels, J. P. Sethna and M. D. Wang, Phys. Rev. Lett., 2008, 100, 148301.
- 10. M. Y. Sheinin and M. D. Wang, Phys. Chem. Chem. Phys., 2009, 11, 4800-4803.
- 11. I. Faustino, A. Perez and M. Orozco, *Biophys. J.*, 2010, **99**, 1876-1885.
- 12. J. Lipfert, J. W. Kerssemakers, T. Jager and N. H. Dekker, Nat. Methods, 2010, 7, 977-980.
- 13. P. Gross, N. Laurens, L. B. Oddershede, U. Bockelmann, E. J. G. Peterman and G. J. L. Wuite, *Nat. Phys.*, 2011, 7, 731-736.
- 14. S. Geggier, A. Kotlyar and A. Vologodskii, *Nucleic Acids Res.*, 2011, **39**, 1419-1426.
- 15. A. Noy and R. Golestanian, *Phys. Rev. Lett.*, 2012, **109**, 228101.
- 16. E. Herrero-Galan, M. E. Fuentes-Perez, C. Carrasco, J. M. Valpuesta, J. L. Carrascosa, F. Moreno-Herrero and J. R. Arias-Gonzalez, *J. Am. Chem. Soc.*, 2013, **135**, 122-131.
- 17. S. Mogurampelly, B. Nandy, R. R. Netz and P. K. Maiti, *Eur. Phys. J. E*, 2013, 36, 68.
- 18. F. C. Chou, J. Lipfert and R. Das, *PLoS Comput Biol*, 2014, **10**, e1003756.
- J. Lipfert, G. M. Skinner, J. M. Keegstra, T. Hensgens, T. Jager, D. Dulin, M. Kober, Z. Yu, S. P. Donkers, F. C. Chou, R. Das and N. H. Dekker, *Proc. Natl. Acad. Sci. U. S. A.*, 2014, **111**, 15408-15413.
- 20. H.-Y. Zhang, C. Ji, Y.-R. Liu, W. Li, H. Li, S.-X. Dou, W.-C. Wang, L.-Y. Zhang, P. Xie and P.-Y. Wang, *Chinese Phys. Lett.*, 2014, **31**, 028701.
- 21. A. Brunet, C. Tardin, L. Salomé, P. Rousseau, N. Destainville and M. Manghi, *Macromolecules*, 2015, 48, 3641-3652.
- 22. A. Garai, S. Saurabh, Y. Lansac and P. K. Maiti, J. Phys. Chem. B, 2015, 119, 11146-11156.
- 23. B. E. Snodin, F. Randisi, M. Mosayebi, P. Sulc, J. S. Schreck, F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis and J. P. Doye, *J. Chem. Phys.*, 2015, **142**, 234901.
- 24. O. D. Broekmans, G. A. King, G. J. Stephens and G. J. L. Wuite, *Phys. Rev. Lett.*, 2016, **116**, 258102.
- 25. A. V. Drozdetski, I. S. Tolokh, L. Pollack, N. Baker and A. V. Onufriev, Phys. Rev. Lett., 2016, 117, 028101.
- 26. S. K. Nomidis, F. Kriegel, W. Vanderlinden, J. Lipfert and E. Carlon, *Phys. Rev. Lett.*, 2017, **118**, 217801.
- 27. E. Skoruppa, M. Laleman, S. K. Nomidis and E. Carlon, J. Chem. Phys., 2017, 146, 214902.
- 28. L. Bao, X. Zhang, Y. Z. Shi, Y. Y. Wu and Z. J. Tan, *Biophys. J.*, 2017, **112**, 1094-1104.
- 29. A. Marin-Gonzalez, J. G. Vilhena, R. Perez and F. Moreno-Herrero, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 7049-7054.
- 30. F. Kriegel, N. Ermann, R. Forbes, D. Dulin, N. H. Dekker and J. Lipfert, *Nucleic Acids Res.*, 2017, 45, 5920-5929.
- 31. A. Garai, D. Ghoshdastidar, S. Senapati and P. K. Maiti, J. Chem. Phys., 2018, 149, 045104.
- 32. K.-X. Xiong, K. Xi, L. Bao, Z.-L. Zhang and Z.-J. Tan, Acta Phys. Sin., 2018, 67, 108701.
- 33. A. Reymer, K. Zakrzewska and R. Lavery, Nucleic Acids Res., 2018, 46, 1684-1694.
- 34. J. M. Schurr, *Biophys Chem.*, 2019, **251**, 106146.
- 35. S. K. Nomidis, E. Skoruppa, E. Carlon and J. F. Marko, *Phys. Rev. E*, 2019, **99**, 032414.
- 36. J. H. Liu, K. Xi, X. Zhang, L. Bao, X. Zhang and Z. J. Tan, *Biophys. J.*, 2019, **117**, 74-86.
- 37. M. Caraglio, E. Skoruppa and E. Carlon, J. Chem. Phys., 2019, **150**, 135101.
- 38. Y. T. Chen, H. Yang and J. W. Chu, *Chem Sci*, 2020, **11**, 4969-4979.
- 39. H. Fu, C. Zhang, X. W. Qiang, Y. J. Yang, L. Dai, Z. J. Tan and X. H. Zhang, *Phys. Rev. Lett.*, 2020, **124**, 058101.
- 40. S. Naskar and P. K. Maiti, J. Mater. Chem. B, 2021, 9, 5102-5113.
- 41. X.-W. Qiang, H.-L. Dong, K.-X. Xiong, W. Zhang and Z.-J. Tan, Commun. Theor. Phys., 2021, 73, 075601.

- 42. M. Segers, E. Skoruppa, J. A. Stevens, M. Vangilbergen, A. Voorspoels and E. Carlon, J. Chem. Phys., 2021, 155, 027101.
- 43. E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, *Phys. Rev. E*, 2021, **103**, 042408.
- 44. S. Assenza and R. Perez, J. Chem. Theory Comput., 2022, 18, 3239-3256.
- 45. M. Segers, A. Voorspoels, T. Sakaue and E. Carlon, J. Chem. Phys., 2022, 156.
- 46. K. B. Chhetri, A. Sharma, S. Naskar and P. K. Maiti, *Nanoscale*, 2022, 14, 6620-6635.
- 47. X.-W. Qiang, C. Zhang, H.-L. Dong, F.-J. Tian, H. Fu, Y.-J. Yang, L. Dai, X.-H. Zhang and Z.-J. Tan, *Phys. Rev. Lett.*, 2022, **128**.
- 48. C. Zhang, F. Tian, Y. Lu, B. Yuan, Z.-J. Tan, X.-H. Zhang and L. Dai, *Sci. Adv.*, 2022, **8**, eabn1384.
- 49. Y. Zhang, L. He and S. Li, J. Chem. Phys., 2023, 158, 094902.

Table S2

 $Table \ S2 \ {\rm The \ Pearson \ correlation \ coefficients \ for \ dsDNA \ at \ different \ temperatures.}$

Structure Parameters	280K	290K	300K	310K	320K
corr (ρ, ω)	-0.4391	-0.4082	-0.3624	-0.3473	-0.2914
corr (τ,ω)	-0.0882	-0.0819	-0.0599	-0.0306	-0.0049
corr (τ , ρ)	-0.0622	-0.0473	-0.025	0.0077	0.0514

Table S3

	280K	290K	300K	310K	320K	
$^{a}K_{\tau\tau}$ (pN·nm)	60.63	58.15	55.64	54.63	51.96	
${}^{\mathrm{a}}K_{ ho ho}(\mathrm{pN}\cdot\mathrm{nm})$	18.77	17.17	16.74	16.63	15.46	
${}^{\mathrm{b}}K_{ ho ho}\left(\mathrm{pN}\cdot\mathrm{nm} ight)$	18.55	17.09	16.55	16.83	15.37	
${}^{\mathrm{a}}K_{\omega\omega}(\mathrm{pN}\cdot\mathrm{nm})$	60.15	50.91	46.31	46.42	43.45	
${}^{\mathrm{b}}K_{\omega\omega}(\mathrm{pN}\cdot\mathrm{nm})$	59.08	50.03	45.82	46.78	43.48	
${}^{\mathrm{a}}K_{\tau\rho}\left(\mathrm{pN}\cdot\mathrm{nm}\right)$	3.80	2.80	1.53	0.09	-1.48	
${}^{\mathrm{a}}K_{\tau\omega}(\mathrm{pN}\cdot\mathrm{nm})$	7.76	6.04	3.76	1.50	-0.50	
${}^{a}K_{\rho\omega}(\mathrm{pN}\cdot\mathrm{nm})$	15.03	12.23	10.12	9.47	7.54	
${}^{\mathrm{b}}K_{\rho\omega}(\mathrm{pN}\cdot\mathrm{nm})$	14.54	11.99	9.96	9.74	7.49	

Table S3 Comparison of dsDNA elasticity parameters in the present works.

a) Obtained from the third-order covariance matrix in Eqs.(2), Eq.(3) and Eq.(4).

b) Obtained from the second-order covariance matrix in Eqs.(10), Eq.(12) and Eq.(13).