Supporting Information for

Revealing the evolution of local structure in the formation process of alkaline earth metal cation-containing zeolite from glass

Peidong Hu,^{ab} Makiko Deguchi,^b Hiroki Yamada,^{bcd} Kentaro Kobayashi,^d

Koji Ohara,^{cd} Sohei Sukenaga,^e Mariko Ando,^f Hiroyuki Shibata,^e

Akihiko Machida,^g Yutaka Yanaba,^h Zhendong Liu,^{*ab¶} Tatsuya Okubo^b

and Toru Wakihara*ab

^{*a*} Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyoku, Tokyo 113-8656, Japan

^b Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

^c Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

^d Faculty of Materials for Energy, Shimane University, 1060 Nishi-Kawatsu-cho, Matsue, Shimane 690-8504, Japan

^e Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

^f Graduate School of Engineering, Tohoku University, 6-6-04 Aramaki, Aoba-ku, Sendai 980-8579, Japan

^g Synchrotron Radiation Research Center, National Institutes for Quantum Science and Technology (QST), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

^h Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku,

Tokyo 153-8505, Japan

* Corresponding author:

Zhendong Liu, Assistant Professor.

E-mail: liuzd@tsinghua.edu.cn

¶ Present address:

State Key Laboratory of Chemical Engineering, Department of Chemical Engineering,

Tsinghua University, Beijing 100084, China

* Corresponding author:

Toru Wakihara, Professor.

Tel: +81-3-5841-3821

Fax: +81-3-5800-3806

E-mail: wakihara@chemsys.t.u-tokyo.ac.jp

Additional simulation details

Reverse Monte Carlo (RMC) simulation of Ba- and Ca-containing glasses

The RMC simulation was performed using the RMC_POT program constrained by the experimental structural data, the cut-off interatomic distances and the coordination numbers.¹ The simulation box contained 10000 atoms with the number density of 0.050 and 0.064 atom Å⁻³ for Ba-glass and Ca-glass, respectively. The cutoff interatomic distances for each atom pair were set as the following tables (unit: Å). For Ba-glass, each Si atom was forced to be surrounded by four O neighbors between 1.4 and 1.8 Å, and each Al atom was forced to have four O neighbors between 1.5 and 1.8 Å. For Ca-glass, each Si atom was forced to be surrounded by four O neighbors between 1.4 and 2.0 Å, and each Al atom was forced to have four O neighbors between 1.5 and 2.0 Å. For both glasses, each O atom was forced to have at most two Si/Al neighbors between the corresponding limits. The constraints were fulfilled for the corresponding atoms by 93% and 96% for Ba-glass and Ca-glass, respectively.

(a) Ba-glass					(b) Ca-glass				
	Si	Al	Ba	0		Si	Al	Ca	0
Si	2.6	2.6	3.3	1.3	Si	2.6	2.6	2.6	1.4
Al	_	2.5	3.3	1.4	Al	_	2.5	2.6	1.5
Ba	_	_	3.8	2.5	Ca	_	_	2.8	2.2
Ο	_	_	_	2.2	0	_	_	_	2.2

Simulated reduced pair distribution function of harmotome and Phillipsite-Ca

The simulation was conducted by software *PDFgui*.² The structural models of harmotome and Phillipsite-Ca were created based on the previously published crystallographic information files,^{3,4} and that of harmotome was further modified to fit the experimental scattering data. Here, the framework was assumed to be composed of only Si and O.⁵ The software *VESTA* was used to visualize the structural models.⁶

Supplementary Tables

Structure code	Name	Extra-framework cation
AFG	Afghanite	Na, K, <u>Ca</u>
BCT	Svyatoslavite	<u>Ca</u>
-CHI	Chiavennite	<u>Ca</u> , Mn
DAC	Dachiardite	<u>Ca</u> , Na, K
FAR	Farneseite	<u>Ca</u> , Na, K
FRA	Franzinite	Na, K, <u>Ca</u>
GIU	Giuseppettite	Na, K, <u>Ca</u>
GOO	Goosecreekite	<u>Ca</u>
LIO	Liottite	Na, <u>Ca</u>
MAR	Marinellite	Na, <u>Ca</u>
MON	Montesommaite	K, Na
NAB	Nabesite	Na
-PAR	Partheite	<u>Ca</u>
-RON	Roggianite	<u>Ca</u>
TER	Terranovaite	Na, <u>Ca</u>
TOL	Tounkite-like material	Na, <u>Ca</u> , K
TSC	Tschornerite	<u>Ca, Sr</u> , K, <u>Ba</u>
WEI	Weinebeneite	<u>Ca</u>
-WEN	Wenkite	<u>Ba</u> , <u>Ca</u> , Na

Table S1 Summary of the zeolites that have not been artificially synthesized and their

 extra-framework cations (the alkaline earth metal cations are highlighted)

Hydroxide	Solubility (g/100 g H ₂ O)
LiOH	12.8
NaOH	114
КОН	118
CsOH	400
Mg(OH) ₂	0.001
Ca(OH) ₂	0.150
Sr(OH) ₂	1.00
Ba(OH) ₂	4.54

Table S2 Solubility of different hydroxides in water at 25 $^{\circ}C^{7,8}$

Supplementary Figures

Fig. S1 (a) PHI-type topological structure viewed along **a**-axis. (b) Symmetric Bacontaining 8R in harmotome. Blue: T (Si or Al); red: O; green: Ba. The PHI framework is comprised of 4Rs and 8Rs. The chains of the doubly connected 4Rs (known as double crankshafts) run parallel to the **a**-axis. Three types of channels confined by 8Rs exist, parallel to the **a**-, **b**- and **c**-axes, respectively. The Ba²⁺ cations in the harmotome are coordinated by the 8Rs aligned along the **c**-axis. The projections of the PHI-type topological structure along each axis can be found in **Fig. S10**.

Fig. S2 Photo of the carbon-coated reactor. Due to the small amount of the reactant in each batch of the synthesis, this small reactor is employed, where the carbon coating plays a role same as the Teflon cup in the conventional autoclave.

Fig. S3 XRD patterns of the products synthesized from Ba-PM for 1 d and 7 d (referenced with simulated XRD patterns of BaCO₃, Al₂O₃ and harmotome).

Fig. S4 ²⁷Al MAS NMR spectrum of Ba-glass acquired at 18.79 T. The spectrum was fitted by software *dmfit*. The asterisk donates the spinning sideband.

Fig. S5 FE-SEM image of the product synthesized from Ba-glass for 1 d, showing the severely etched surface.

Fig. S6 XRD patterns of the products synthesized from Ba-glass for 1 d and 3 d in a pH 14 NaOH solution (referenced with simulated XRD patterns of BaCO₃ and harmotome). The red arrows indicate the diffraction peaks derived from BaCO₃.

Fig. S7 Comparison of (a) total structure factors, S(Q), and (b) differential structure factors, $S_{\text{Ba}}(Q)$, of Ba-glass obtained by experimental measurement and RMC simulation. (c) Partial PDFs, $g_{ij}(r)$, of Ba-glass obtained by RMC simulation.

Fig. S8 Partial reduced PDFs, $G_{ij}(r)$, of harmotome obtained by software *PDFgui*. (a) and (b) show all the $G_{ij}(r)$ related to Ba and Si, respectively, where Ba–All and Si–All mean the sum of each $G_{ij}(r)$ related to Ba and Si, respectively. In (c), All–All means the total reduced PDF, G(r), of harmotome.

Fig. S9 (a) Comparison of total structure factors, S(Q), of Ca-glass obtained by experimental measurement and RMC simulation. (b) Partial PDFs, $g_{ij}(r)$, of Ca–O/Si/Al pairs of Ca-glass obtained by RMC simulation. (c) Partial reduced PDFs, $G_{ij}(r)$, of Ca–O/Si pairs of Phillipsite-Ca obtained by software *PDFgui*.

Fig. S10 Illustrations of (a) Ba^{2+} sites in harmotome and (b) Ca^{2+} sites in Phillipsite-Ca. Ba²⁺ cations in the harmotome block the 8R channels parallel to the **c**-axis, while Ca^{2+} cations in the Phillipsite-Ca obstruct the 8R channels parallel to the **a**- and **b**-axes.⁹

References

- O. Gereben, P. Jóvári, L. Temleitner and L. Pusztai, A new version of the RMC++ Reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses, *J. Optoelectron. Adv. Mater.*, 2007, 9, 3021-3027.
- 2 C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Bozin, J. Bloch, T. Proffen and S. J. Billinge, PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals, *J. Phys.: Condens. Matter*, 2007, **19**, 335219.
- 3 E. Stuckenschmidt, H. Fuess and Å. Kvick, Investigation of the structure of harmotome by X-ray (293 K, 100 K) and neutron diffraction (15 K), *Eur. J. Mineral.*, 1990, 2, 861-874.
- R. Rinaldi, J. J. Pluth and J. V. Smith, Zeolites of the Phillipsite Family.
 Refinement of the Crystal Structures of Phillipsite and Harmotome, *Acta Cryst.*, 1974, B30, 2426-2433.
- 5 H. Yamada, S. Tominaka, K. Ohara, Z. Liu, T. Okubo and T. Wakihara, Structural Evolution of Amorphous Precursors toward Crystalline Zeolites Visualized by an in Situ X-ray Pair Distribution Function Approach, J. Phys. Chem. C, 2019, 123, 28419-28426.
- 6 K. Momma and F. Izumi, *VESTA 3* for three-dimensional visualization of crystal, volumetric and morphology data, *J. Appl. Cryst.*, 2011, **44**, 1272-1276.
- J. L. Provis, in *Geopolymers: Structures, Processing, Properties and Industrial Applications*, Eds.: J. L. Provis and J. S. J. van Deventer, Woodhead Publishing, Cambridge, 2009, ch. 4, pp. 50-71.
- 8 I. Lambert and H. L. Clever, *Alkaline Earth Hydroxides in Water and Aqueous Solutions*, Pergamon Press, Oxford, 1992.
- 9 T. Armbruster and M. E. Gunter, Crystal Structures of Natural Zeolites, *Rev. Mineral. Geochem.*, 2001, **45**, 1-67.