Supplementary Information

Two-dimensional graphene+ as an anode material for calcium-ion batteries with ultra-high capacity: a first-principles study

Tao Yang,^a Tian-Ci Ma,^a Xiao-Juan Ye,^{a,b,*} Xiao-Hong Zheng,^c Ran Jia,^d Xiao-Hong

Yan,^a Chun-Sheng Liu^{a,*}

^aCollege of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

^bCollege of Integrated Circuit Science and Engineering, Nanjing University of Posts a

nd Telecommunications, Nanjing 210023, China

^cCollege of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

^dInstitute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China

*Email: yexj@njupt.edu.cn (X.-J.Y.).

*Email: csliu@njupt.edu.cn (C.-S.L.).

Fig. S1 Variation in total energy at 400 (a) and 800 K (b) using AIMD simulation for graphene+.

Fig. S2 (a)-(d) Four stable adsorption sites of Ca on graphene+.

Fig. S3 Meta-stable configurations of graphene+ with different Ca concentrations.

Table S1 The possible adsorption and final (after relax) adsorption sites.

Possible adsorption site	Final adsorption site
$H_{1}/T_{5}/B_{1}$	H_1
H_2	H_2
$T_{1}/T_{3}/T_{4}$	T_1
$T_2/H_3/T_4/B_2/B_3/B_5$	T_2

Stoichiometry	Distance to the convex hull (eV per formula unit)
C*	0.0
Ca _{0.027} C*	0.0
Ca _{0.055} C*	0.0
Ca _{0.083} C	0.03
Ca _{0.083} C*	0.0
Ca _{0.111} C-1	0.31
Ca _{0.111} C-2	0.44
Ca _{0.111} C-3	0.55
Ca _{0.111} C*	0.0
Ca _{0.167} C	0.02
Ca _{0.222} C-1	0.57
Ca _{0.222} C-2	0.65
Ca _{0.222} C*	0.0
Ca _{0.277} C	0.09
Ca _{0.333} C	0.20
Ca _{0.333} C*	0.0

 Table S2 Description of graphene+ phases with different Ca concentrations. The structures

 marked with an asterisk (*) represent stable phases located at the minima of the convex curve.