Supplementary Information: Radiolytic evaluation of a new technetium redox control reagent for advanced used nuclear fuel separations

Anh N. Dang,^a Maya H. Rogalski,^a Corey D. Pilgrim,^b Joseph R. Wilbanks,^b Dean R. Peterman,^b Jesse D. Carrie,^b Peter R. Zalupski,^b Stephen P. Mezyk,^{a*} and Gregory P. Horne,^{b*}

- ^a Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach California, 90840-9507, USA
- ^b Center for Radiation Chemistry Research, Idaho National Laboratory, Idaho Falls, ID, P.O. Box 1625, 83415, USA.
- *Corresponding authors. E-mail: <u>stephen.mezyk@csulb.edu</u> and <u>gregory.holmbeck@inl.gov</u>.

ADDITIONAL CHEMICAL KINETICS

HYDRATED ELECTRON

Fig. S1. Transient absorption spectra for e_{aq}^{-} reaction in Ar-saturated 2.49 mM DAG (\blacksquare) and 2.49 mM 1:1 [DAG:ReO₄] (\bullet) in 10 mM phosphate buffered pH 6.95 solution containing 0.50 M t-butanol at 22.4 \pm 0.1 °C. Data obtained from final limiting absorbance values fitted using single-exponential fit to measured kinetics. (**B**) Transient kinetics measured at 720 nm for Ar-saturated 2.49 (\blacksquare), 1.53 (\bullet), 0.98 (\blacktriangle) and 0.52 (\checkmark) mM 1:1 [DAG:ReO₄]. Solid lines correspond to single-exponential fits, with fitted values of $k' = (4.21 \pm 0.04)$, (2.70 \pm 0.02), (1.79 \pm 0.01), and (0.95 \pm 0.01) \times 10⁷ s⁻¹, respectively. *Inset:* Second-order rate coefficient determination for DAG (\blacksquare) and [DAG:ReO₄] (\bullet) in the same respective solutions. The solid lines are weighted linear fits, corresponding to a second-order rate coefficient of $k(e_{aq}^{-} + DAG) = (1.97 \pm 0.06) \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$, and $k(e_{aq}^{-} + [DAG:ReO_4]) = (1.62 \pm 0.03) \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$, R² = 0.98 and 0.99, respectively.

HYDROGEN ATOM

Fig. S2. Transient kinetics measured at 360 nm for H[•] atom reaction in N₂-saturated 2.49 (\blacksquare), 1.48 (\bullet), 1.00 (\blacktriangle), and 0.48 (\checkmark) mM 1:1 [DAG·ReO₄] in 10 mM phosphate buffer, pH 3.06 solution containing 102.5 µM pCBA at 22.7 ± 0.1 °C. Solid lines correspond to exponential growth and decay function fits, with fitted growth values of $k' = (2.67 \pm 0.10)$, (2.41 ± 0.07), (2.15 ± 0.04), and (2.01 ± 0.03) × 10⁵ s⁻¹, respectively. *Inset:* Second-order rate coefficient determination for DAG (\blacksquare) and [DAG·ReO₄] (\bullet) in the same respective solutions. The solid lines are weighted linear fits, corresponding to a second-order rate coefficient of $k(H^{+} + DAG) = (7.25 \pm 0.23) × 10^6 M^{-1} s^{-1}$ and $k(H^{+} + [DAG·ReO_4]) = (3.19 \pm 0.23) × 10^7 M^{-1} s^{-1}$, R² = 0.94 and 0.96, respectively.

NITRATE RADICAL

Fig. S3. (A) Transient absorption spectra for NO₃[•] radical reaction in N₂O-saturated 2.47 mM DAG (\blacksquare) and 2.51 mM 1:1 [DAG:ReO₄] (\bullet) at pH 3.02 in 5.0 M NaNO₃/1.0 mM HClO₄ at 22.8 ± 0.1 °C. Data obtained from final limiting absorbance values fitted using single-exponential fit to measured kinetics. (**B**) Transient kinetics measured at 640 nm for N₂O-saturated 2.47 (\blacksquare), 1.39 (\bullet), 0.98 (\blacktriangle), and 0.54 (\checkmark) mM DAG. Solid lines correspond to single-exponential fits, with fitted values of $k' = (5.29 \pm 0.10)$, (2.96 ± 0.04), (2.15 ± 0.02), and (1.15 ± 0.01) × 10⁶ s⁻¹, respectively. *Inset:* Second-order rate coefficient determination for DAG (\blacksquare) and [DAG-ReO₄] (\bullet) in the same respective solutions. The solid lines are weighted linear fits, corresponding to a second-order rate coefficient of $k(NO_3^{\bullet} + DAG) = (2.19 \pm 0.03) \times 10^9 M^{-1} s^{-1}$ and $k(NO_3^{\bullet} + [DAG-ReO_4]) = (2.06 \pm 0.03) \times 10^9 M^{-1} s^{-1}$, R² = 0.99 and 0.99, respectively

Fig. S4. Concentration of DAG as a function of absorbed dose from the gamma irradiation of formerly: 50 mM DAG in water (\blacksquare); 50 mM DAG in 2.0 M HNO₃ (\bullet); and 100 mM DAG in 2.0 M HNO₃:1.5 M DEH*i*BA/*n*-dodecane (\blacktriangle) under ambient irradiator temperature conditions. Solid lines are first-order exponential fits to data for dose constant calculation.