Supplementary Information

How Spin State and Oxidation Number of Transition Metal Atoms Determine

Molecular Adsorption: A First-Principles Case Study for NH₃

Hua-Jian Tan^{a, c}, Rutong Si^b, Xi-Bo Li^d, Zhen-Kun Tang^e, Xiao-Lin Wei^f, Nicola Seriani^{b*}, Wen-Jin Yin^{a,b,c*} and Ralph Gebauer^b

^aSchool of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China

^bThe Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy

^cKey Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China

^dDepartment of Physics, Jinan University, Guangzhou 510632, P. R. China

^eCollege of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421008, China

^fDepartment of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, Hunan, China

Corresponding Emails: <u>nseriani@ictp.it</u>, <u>wyin@ictp.it</u>

Fig. S1. The top views of optimized $TM@S_v$ -SnS₂ structures, with Sc~Zn atoms correspond to (a)-(j), respectively.

Fig. S2. The total electronic density of states for the substrates of $TM@S_v$ -SnS₂ without TM atoms in different electron number n, together with case of S_v -SnS₂ for comparison.

Fig. S3. The upper/lower part corresponds to the top/side views of NH_3 adsorbed at $TM@S_v$ -SnS₂ surfaces, with Sc~Zn correspond to (a)-(j). The N and H atoms are in silver white and pink, respectively.

Fig. S4. The size effect of supercell on the NH_3 adsorption at $TM@S_v$ -SnS₂ in different even electron number n. For clear, the highest values for both (4×4) and (5×5) cases are set to zero.

Fig. S5. The top and side views of charge density difference of $NH_3@TM@S_v-SnS_2$ structures, with $Sc \sim Zn$ correspond to (a)-(j), respectively. The purple and cyan areas indicate electron depletion and accumulation, with an isosurface of $10^{-3} e/Å^3$.

Fig. S6. The DOS of $NH_3@TM@S_v$ -SnS₂ with TM atoms in even electron number n. Star * denotes NH_3 adsorbed at surface.

Fig. S7. The projected DOS of 3d orbital as well as 3σ orbital of adsorbed NH₃ for TM atoms in even electron number n. The corresponding interacted orbitals are also provided in the inset, with an isosurface of $10^{-7} e/Å^3$, respectively.

Fig. S8. (Color online) (a) The illustration of outermost valence electron filling in the 3d orbitals of TM ions in TM@S_v-Sn for V^{2+} , Cr^{2+} , Co^0 , and Ni^0 ions. The corresponding frontier orbitals between 3σ of NH_3 and 3d orbital of TM ions with (b) dxz orbital, and (c) dz² orbital, respectively.