Supporting Information:

The systematic study on the phase diagram and superconductivity of ternary clathrate Ca–Sc–H at high pressures

Wenjie Yuan^a, Xu Yang^a, Shichang Li^a, Chunbao Feng^a, Bole Chen^a, Ying

Chang^a, and Dengfeng Li^{a,b}

^aSchool of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China. E-mail: lisc@cqupt.edu.cn

^bSchool of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China. E-mail: lidf@cqupt.edu.cn

Table	S1 .	Crystallographic	data	of 1	the	newly	predicted	structures	of	ternary	Ca-Sc-H
compo	unds	under high pressu	re (P,	in G	Pa).	. The ur	nit of lattice	e parameter	s (a	, <i>b</i> , and <i>c</i>) is given
in Å.											

Compound	Space group	$P(\mathbf{GP}_{\mathbf{c}})$	Lattice parameters	At	omic coordina	tes (fractiona	al)
Compound	space group	r (GPa)	(Å, °)	Atoms	х	у	Ζ
CaSc ₂ H ₃	Immm	200	<i>a</i> = 7.7776	Ca(2c)	0.00000	0.00000	0.50000
			<i>b</i> = 3.6064	Sc(4f)	-0.16565	0.50000	0.00000
			<i>c</i> = 2.4821	H(4e)	-0.17429	0.00000	0.00000
			$\alpha = \beta = \gamma = 90$	H(2b)	-0.50000	0.00000	0.00000
CaSc ₂ H ₆	P6 ₃ /mmc	200	a = c = 2.9638	Ca(2c)	0.66667	0.33333	0.75000
			<i>b</i> =10.6052	Sc(4f)	0.66667	0.33333	0.41596
				H(4f)	0.66667	0.33333	0.57831
			$\alpha = \gamma = 90$	H(4e)	1.00000	0.00000	0.16075
			$\beta = 120$	H(2a)	1.00000	0.00000	0.00000
				H(2d)	0.66667	0.33333	0.25000
CaSc ₂ H ₉	Immm	200	<i>a</i> = 8.4205	Ca(2d)	0.00000	0.50000	0.00000
			b=3.9777	Sc(4f)	-0.33183	0.50000	0.00000
			c=2.7802	H(8n)	-0.16856	0.24599	0.00000
				H(4e)	-0.33056	0.00000	0.00000
			$\alpha = \beta = \gamma = 90$	H(4h)	-0.50000	0.26894	0.00000
				H(2a)	0.00000	0.00000	0.00000
CaSc ₃ H ₁₂	Pm3m	200	a = b = c = 3.9532	Ca(1b)	0.50000	0.50000	0.50000

				Sc(3d)	0.00000	0.00000	0.50000
				H(8g)	0.24424	0.24424	0.24424
			$\alpha=\beta=\gamma=90$	H(3c)	0.00000	0.50000	0.50000
				H(1a)	0.00000	0.00000	0.00000
CaScH ₄	$P\overline{6}_{m2}$	200	<i>a</i> = b=2.9681	Ca(1a)	2.00000	1.00000	0.00000
			c=3.5625	Sc(1d)	1.33333	0.66667	0.50000
				H(2i)	0.66667	0.33333	0.26483
			$\alpha = \beta = 90$	H(1b)	2.00000	1.00000	0.50000
			γ=120	H(1c)	1.33333	0.66667	0.00000
$CaScH_6$	$R^{\overline{3}}m$	200	<i>a</i> = <i>b</i> =2.7310	Ca(3b)	0.33333	0.66667	0.66667
			c=14.5510	Sc(3a)	0.33333	0.66667	0.16667
				H(6c)	0.33333	0.66667	0.28040
			$\alpha = \beta = 90$	H(6c)	0.33333	0.66667	0.42319
			γ=120	H(6c)	0.33333	0.66667	0.54641
CaScH ₂	I4 ₁ /amd	200	a = b = 3.6074	Ca(4a)	0.00000	-0.50000	0.25000
			<i>c</i> =7.2067	Sc(4b)	0.00000	-0.50000	-0.25000
			$\alpha = \beta = \gamma = 90$	H(8e)	0.00000	-0.50000	-0.00674
CaScH ₃	P6 ₃ /mmc	200	a = b = 2.8823	Ca(2c)	1.33333	0.66667	-0.75000
			<i>c</i> =7.1247	Sc(2a)	2.00000	1.00000	0.00000
			$\alpha = \beta = 90$	H(4f)	1.33333	0.66667	-0.39801
			γ=120	H(2b)	0.00000	0.00000	-0.25000
CaScH ₇	P4/mmm	200	<i>a</i> = <i>b</i> =2.6547	Ca(1b)	0.00000	0.00000	0.50000
			c=4.5960	Sc(1c)	0.50000	0.50000	0.00000
				H(4i)	0.00000	0.50000	0.23784
			$\alpha=\beta=\gamma=90$	H(2h)	0.50000	0.50000	0.40427
				H(1a)	0.00000	0.00000	0.00000
Ca ₂ ScH ₁₀	C2/m	200	<i>a</i> =4.8583	Ca(4i)	0.13504	0.50000	0.67529
			<i>b</i> =2.7538	Sc(2a)	0.00000	0.00000	0.00000
			<i>c</i> =7.2546	H ₁ (4i)	0.16251	0.50000	0.91684
				H ₂ (4i)	0.18179	0.50000	0.15147
				H ₃ (4i)	0.20351	0.50000	0.43464
			α =γ=90	H ₄ (4i)	0.02745	-0.00000	0.23080
			β=93.52	H ₅ (4i)	0.09487	-0.00000	0.49793
CaScH ₁₂	$Pm\overline{3}m$	200	<i>a</i> = <i>b</i> = <i>c</i> =3.37410	Ca(1a)	0.00000	0.00000	0.00000
				Sc(1b)	0.50000	0.50000	0.50000
			$\alpha=\beta=\gamma=90$	H(12h)	0.00000	0.75294	0.50000

	$CaScH_6$	$CaSc_2H_9$	Ca_2ScH_{10}	CaScH ₁₂
	<i>R</i> ³ <i>m</i>	Immm	C2/m	$Pm^{3}m$
C ₁₁	534.91	520.02	412.87	882.55
C ₁₂	347.22	246.09	200.89	258.99
C ₁₃	441.77	206.93	210.09	258.99
C ₂₂	534.91	472.53	420.67	882.55
C ₂₃	441.77	253.63	208.1	258.99
C ₃₃	722.16	519.86	464.49	882.55
C ₄₄	169.09	141.95	119.34	254.99
C ₅₅	169.09	95.57	135.12	254.99
C ₆₆	93.84	165.44	111.98	254.99
В	472.62	325.08	281.8	466.85
G	123.82	134.31	118.55	277.71
B/G	3.82	2.42	2.38	1.68
Y	341.63	354.16	311.92	695.27
σ	0.38	0.32	0.32	0.25

Table S2. Calculated elastic constants C_{ij} and bulk (B), shear (G), Young's (Y) moduli and Poisson's ratio (σ) of the stable phase of Ca-Sc-H systems selected pressures. All moduli are in GPa.

Figure S1. (a) Total electronic density of states (DOS) of and (b) partial DOS of H atoms in LaH₁₀,¹ CaH₁₀, CaH₁₂,² CaScH₆, Ca₂ScH₁₀, CaSc₂H₉, CaScH₁₂, and Ca(ScH₄)₃ at 200 GPa.

Figure S2. Electronic density of states for (a) $CaScH_6$ and (b) $CaSc_2H_9$ under the pressure from 100 to 250 Gpa.

Figure S3. Electronic density of states for (a) Ca_2ScH_{10} and (b) $CaScH_{12}$ under the pressure from 100 to 250 GPa.

Figure S4. Charge state densities of $CaScH_6$, $CaSc_2H_9$, Ca_2ScH_{10} , and $CaScH_{12}$ at 200GPa. CaScH₆ along the (1 1 0) plane, (b) *Immm*- CaSc₂H₉ along the (1 0 0) plane, (c) *C*2/*m*-Ca₂ScH₁₀ along the (1 0 0) plane, (d) *Pm*³*m*-CaScH₁₂ along the (-2.02378 1 1.02378) plane at 200 GPa.

Figure S5. Pressure-dependent phonons and electron-phonon coupling spectra for CaScH₆.

Figure S6. Pressure-dependent phonons and electron-phonon coupling spectra for Ca_2ScH_{10} .

Figure S7. Pressure-dependent phonons and electron-phonon coupling spectra for CaSc₂H₉.

Figure S8. Pressure-dependent phonons and electron-phonon coupling spectra for CaScH₁₂.

POSCAR	$R: R^{\overline{3}}n$	n-CaScH ₆							
1.000)00000	0000000							
2.7	731060	071286734	36	0.0000000	00000	0000	0.0000000	000000000	
-1.3	65530	35643367	18	2.3651679	68255	7902	0.0000000	00000000	
0.0	00000	000000000	000	0.0000000	000000	0000	14.5510734	252590499	
Ca	Sc	Н							
3	3	18							
Direct									
0.0000	00000	0000000	-0.0000	000000000	0000	0.50000	0000000000000	0	
0.6666	666687	70000029	0.333	333342999	99996	0.8333	3331299999	71	
0.3333	333342	299999996	0.666	6666687000	00029	0.1666	6667199999	81	
-0.0000	00000	. 0000000	0.0000	000000000	0000	0.00000	0000000000	0	
0.6666	66668	70000029	0.333	333342999	99996	0.3333	3334299999	96	
0.3333	333342	299999996	0.666	6666687000	00029	0.6666	6668700000	29	
-0.0000	00000	0000000	0.000	00000000	0000	0.1139	9870741551	52	
-0.0000	00000	- 0000000	0.0000	000000000	0000	0.88600	1277584480	0	
0.6666	666687	70000029	0.333	333342999	99996	0.4473	3203641551	37	
0.6666	666687	70000029	0.333	333342999	99996	0.2193	3462058448	67	
0.3333	333342	299999996	0.666	6666687000	00029	0.7806	6534941551	79	
0.3333	333342	299999996	0.666	6666687000	00029	0.5526	6796358448	63	
-0.0000	00000	0000000	0.000	000000000	0000	0.2560	7923381914	30	
0.0000	00000	0000000	-0.0000	000000000	0000	0.74392	0737180858	0	
0.6666	666687	70000029	0.333	333342999	99996	0.5894	1257681914	27	
0.6666	666687	70000029	0.333	333342999	99996	0.0772	5410218085	24	
0.3333	333342	299999996	0.666	6666687000	00029	0.9227	4588981914	70	
0.3333	333342	299999996	0.666	6666687000	00029	0.4105	8742318085	73	
-0.0000	00000	0000000	0.000	000000000	0000	0.3794	1077992184	54	
0.0000	00000	0000000	-0.0000	000000000	0000	0.62058	9190078152	1	
0.6666	666687	70000029	0.333	333342999	99996	0.7127	4412292184	51	
0.6666	666687	70000029	0.333	333342999	99996	0.9539	2256307815	42	
0.3333	333342	299999996	0.666	6666687000	00029	0.0460	7744792184	32	
0.3333	333342	299999996	0.666	6666687000	00029	0.2872	5587707815	50	

POSCAR:Immm-CaSc₂H₉ 1.000000000000000 2.9568861110424893 0.00000000000000000 0.00000000000000000 0.00000000000000000 4.2242466708092792 8.9283821013229794 Ca Sc Η 2 8 4 Direct 0.000000000000000000 0.50000000000000 -0.0000000000000000 0.50000000000000 -0.0000000000000000 0.50000000000000000 -0.00000000000000000 0.50000000000000000 0.3319541745909074 0.50000000000000000 0.6680458254090924 0.50000000000000 -0.00000000000000000 0.8319541745909076 0.50000000000000 -0.0000000000000000 0.1680458254090926 0.2424798849811872 0.1700110720092442 -0.00000000000000000 0.7575201150188127 0.8299889429907535 0.7575201150188127 0.1700110720092442 0.00000000000000000 0.2424798849811872 0.8299889429907535 0.7424798849811873 0.6700110570092465 0.50000000000000000 0.2575201150188199 0.3299889429907535 0.2575201150188199 0.6700110570092465 0.50000000000000000 0.7424798849811873 0.3299889429907535 -0.00000000000000 -0.000000000000000 0.3299590604263207 0.00000000000000 -0.0000000000000000 0.6700409105736735 0.50000000000000000 0.50000000000000000 0.8299590894263265 0.1700409395736793 0.2706487328768900 0.50000000000000000 -0.00000000000000000 0.7293512671231100 0.50000000000000000 0.50000000000000000 0.7706487328768900 -0.0000000000000000 0.2293512671231101 -0.0000000000000000 0.50000000000000000 0.50000000000000000 0.50000000000000 0.500000000000000

POSCAI	R: <i>C2/n</i>	n-Ca ₂ ScH	10						
1.000	00000	000000							
5.1	161298	85613551	778	0.00000	0000000	00000	-0.03605	12758029	978
0.0	00000	0000000	000	2.99865	8308189	5786	0.00000	00000000	000
-0.2	88678	44617686	519	0.00000	0000000	0000	7.63335	58977245	541
Ca	Sc	Н							
4	2	20							
Direct									
0.1444	404161	0647362	0.500	0000000	000000	0.6769	67377037	3635	
0.8555	595868	39352665	0.500	0000000	000000	0.3230)32622962	26362	
0.6444	404131	10647335	0.000	0000000	000000	0.6769	67377037	3635	
0.3555	595838	89352638	0.000	0000000	000000	0.3230)32622962	26362	
-0.0000	00000	0000000	-0.0000	0000000	00000	0.00000	00000000	0000	
0.5000	00000	0000000	0.500	0000000	000000	0.0000	00000000	00000	
0.0150	079729	91780657	0.000	0000000	000000	0.2318	304429524	5062	
0.9849	920299	98219333	-0.0000	0000000	00000	0.76819	955404754	4913	
0.5150	079700	01780667	0.500	0000000	000000	0.2318	304429524	5062	
0.4849	920270	08219343	0.500	0000000	000000	0.7681	95540475	54913	
0.0868	801240	07530279	0.000	0000000	000000	0.5048	353617019	06025	
0.913	198737	72469773	-0.0000	0000000	00000	0.49514	463829803	3975	
0.5868	801262	27530227	0.500	0000000	000000	0.5048	353617019	06025	
0.413	198766	52469762	0.500	0000000	000000	0.4951	46382980)3975	
0.1604	416276	50985000	0.500	0000000	000000	0.9236	55816668	39005	
0.8395	583693	39014973	0.500	0000000	000000	0.0763	344183331	0992	
0.6604	416306	50985027	0.000	0000000	000000	0.9236	55816668	39005	
0.3395	583723	39014999	-0.0000	0000000	00000	0.07634	441833310)992	
0.1758	868498	87595158	0.500	0000000	000000	0.1471	18780873	80320	
0.824	131516	52404820	0.500	0000000	000000	0.8528	881189126	59656	
0.6758	868483	37595180	0.000	0000000	000000	0.1471	18780873	30320	
0.324	131516	52404821	-0.0000	0000000	00000	0.85288	811891269	9656	
0.197	156016	66349061	0.500	0000000	000000	0.4295	502071211	8658	
0.8028	843968	33650961	0.500	0000000	000000	0.5704	197898788	31320	
0.697	156031	6349039	-0.0000	0000000	00000	0.42950	020712118	8658	
0.3028	843968	33650961	-0.0000	0000000	00000	0.57049	978987881	1320	

POSCAR:Pm3m-CaScl	H ₁₂				
1.0000000000000000					
3.3740634318908	8138	0.000000000	0000000	0.00000000000000	0000
0.0000000000000000000000000000000000000	0000	3.374063431	8908138	0.00000000000000	0000
0.0000000000000000	0000	0.000000000	0000000	3.374063431890	8138
Ca Sc H					
12 1 1					
Direct					
0.0000000000000000000	0.75	293826544946	529 0.500	000000000000000000000000000000000000000	
-0.000000000000000000000000000000000000	0.24	706173455053	72 0.5000	0000000000000	
0.500000000000000000	0.00	0000000000000	000 0.7529	9382654494629	
0.500000000000000000	0.00	0000000000000	00 0.247	0617345505372	
0.7529382654494629	9 0.50	00000000000000	000.0 000	000000000000000000000000000000000000000	
0.2470617345505372	2 0.50	0000000000000	000 -0.000	00000000000000	
0.7529382654494629	9 0.00	00000000000000	00 0.500	000000000000000000000000000000000000000	
0.2470617345505372	2 0.00	00000000000000	00 0.500	000000000000000000000000000000000000000	
-0.000000000000000000000000000000000000	0.50	000000000000000000000000000000000000000	00 0.2470	617345505372	
0.0000000000000000000000000000000000000	0.50	0000000000000	000 0.7529	9382654494629	
0.500000000000000000	0.75	293826544946	529 -0.000	00000000000000	
0.500000000000000000	0.24	706173455053	0.000	000000000000000000000000000000000000000	
0.0000000000000000000000000000000000000	0.00	00000000000000	000 -0.000	00000000000000	
0.50000000000000000	0.50	000000000000000000000000000000000000000	00 0.500	0000000000000	

References

1. Liu, H.; Naumov, I. I.; Hoffmann, R.; Ashcroft, N. W.; Hemley, R. J., Potential High-Tc Superconducting Lanthanum and Yttrium Hydrides at High Pressure. *Proceedings of the National Academy of Sciences* **2017**, *114*, 6990-6995.

2. Wang, H.; Tse, J. S.; Tanaka, K.; Iitaka, T.; Ma, Y., Superconductive Sodalite-Like Clathrate Calcium Hydride at High Pressures. *Proceedings of the National Academy of Sciences* **2012**, *109*, 6463-6466.