SUPPLEMENTARY MATERIAL:

Moiré-of-Moiré phases formed in twisted graphene/hexagonal boron nitride heterostructures under high pressure

Yaomin Li, Bin Zhang*

State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China

Corresponding author

* Bin Zhang. E-mail: <u>beenchang@nuaa.edu.cn</u>

A. The Wyckoff positions and full atomic coordinates (in fractional) of m-BC₂N-21.78°

Table S1.	The Wyckoff	positions and fu	ll atomic coordinat	tes (in fractional)	of <i>m</i> -BC ₂ N-21.78°	under
zero pressu	ire					

Crystal	Groups	Wyckoff positions	Atomic coordinates			
			C1 0.306880 0.437640 0.674420			
	P3 (143)		C2 0.398300 0.121620 0.645860			
			C3 0.106620 0.464340 0.790210			
			C4 0.268160 0.209020 0.826620			
			C5 0.562360 0.869240 0.674420			
			C6 0.878380 0.276680 0.645860			
			C7 0.535660 0.642280 0.790210			
			C8 0.790980 0.059140 0.826620			
		C1 0.30688 0.43764 0.67442	C9 0.130760 0.693120 0.674420			
		C2 0.39830 0.12162 0.64586	C10 0.723320 0.601700 0.645860			
		C3 0.10662 0.46434 0.79021	C11 0.357720 0.893380 0.790210			
		C4 0.26816 0.20902 0.82662	C12 0.940860 0.731840 0.826620			
		C5 0.00000 0.00000 0.91236	C13 0.000000 0.000000 0.912360			
m-BC ₂ N		C6 0.66667 0.33333 0.68826	C14 0.666670 0.333330 0.688260			
(21.78°)		N1 0.87561 0.59836 0.12926	N1 0.875610 0.598360 0.129260			
		N2 0.12858 0.44146 0.15338	N2 0.128580 0.441460 0.153380			
		N3 0.00000 0.00000 0.26108	N3 0.401640 0.277250 0.129260			
		B1 0.10735 0.64607 0.28456	N4 0.558540 0.687120 0.153380			
		B2 0.94060 0.21604 0.31233	N5 0.722750 0.124390 0.129260			
		B3 0.666667 0.33333 0.05198	N6 0.312880 0.871420 0.153380			
			N7 0.000000 0.000000 0.261080			
			B1 0.107350 0.646070 0.284560			
			B2 0.940600 0.216040 0.312330			
			B3 0.353930 0.461280 0.284560			
			B4 0.783960 0.724560 0.312330			
			B5 0.538720 0.892650 0.284560			
			B6 0.275440 0.059400 0.312330			
			B7 0.666670 0.333330 0.051980			

B. Verification of elastic constants C_{ij} calculations

Crystal	C_{11}	<i>C</i> ₂₂	<i>C</i> ₃₃	C_{44}	C ₅₅	C_{66}	C_{12}	C_{13}	<i>C</i> ₂₃	Source
	1054.4	-	-	563.1	-	-	120.0	-	-	This
Diamond	1076	-	-	577	-	-	125	-	-	Expt. ¹
	1099	-	-	590	-	-	149	-	-	Cal. ²
	853.4	-	-	497.4	-	-	215.8	-	-	This
cBN	820	-	-	480	-	-	190	-	-	Expt. ³
	823			479			185			Cal. ⁴

Table S2. Comparison of DFT-calculated elastic constants C_{ij} (in GPa) for diamond and *c*BN with reported experimental and DFT results.

C. Verification of electronic band structure calculations

Figure S1. Electronic band structures of diamond, where the black lines are obtained from HSE06 functional, the red lines are obtained from PBE functional. It can be observed that HSE06 increases only the values of band gap without causing any qualitative changes in the band structure.

D. Verification of size-dependent effects on the structural stability of m-BC₂N (21.78°)

Figure S2. The validation of size-dependent effects on the structural stability of *m*-BC₂N (21.78°). (a) Upon full relaxation at zero pressure, the atomic structure of the $1 \times 1 \times 2$, $2 \times 2 \times 1$, and $2 \times 2 \times 2$ supercell units maintains a perfect *sp*³ configuration. (b) The total energy per atom of the $1 \times 1 \times 2$ and $2 \times 2 \times 1$ supercell as a function of atomic density, exhibits a high degree of consistency compared to the $1 \times 1 \times 1$ unit. (c) Phonon dispersion relation of $1 \times 1 \times 2$ supercell reveals no occurrence of imaginary frequencies. These findings collectively support the stability of *m*-BC₂N (21.78°) regardless of its unit cell dimensions.

F. Band structure of m-BC₂N (9.43°)

Figure S3. The electronic band structures along the high symmetry direction in the Brillouin zone of m-BC₂N (9.43°). Additionally, the band structure shows a characteristic of p-doped semiconductors. This finding aligns with the minute peak observed at the Fermi point in the DOS curve (Figure 9a).

References

- 1 M. Grimsditch and A. Ramdas, *Phys. Rev. B*, 1975, **11**, 3139.
- 2 Y. Cheng, R. Melnik, Y. Kawazoe and B. Wen, Cryst. Growth Des., 2016, 16, 1360-1365.
- 3 M. Grimsditch, E. Zouboulis and A. Polian, J. Appl. Phys., 1994, 76, 832-834.
- 4 Q. Fan, Q. Wei, H. Yan, M. Zhang, Z. Zhang, J. Zhang and D. Zhang, Comput. Mater. Sci., 2014, 85, 80-87.