Investigation of nonlinear optical properties in α -A₂BB'O₆ (A = Li, Na, K;

B=Ti, Zr, Hf; B' = Se, Te) by first-principles calculations

Gaojing Fang,^{ab} Xiaojun Teng,^c Luo Yan,^{ad} Yu Wu,^a Kui Xue,^{ad} Xiaofeng Zhang,^d Yimin Ding,^{*a} Liujiang Zhou,^{*ad} and Qiye Wen^{*ab}

^a Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

^b School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

c Chengdu Answer Information Technology Co., LTD., Chengdu 610041, China

^d School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China

1 Table of content

Ζ
2
0
1
1
2
2

2 The results of AIMD, phonon spectra, band and DOS of stable

ABB'O

Figure S1. Energy variations under the AIMD simulations and phonon spectra at 300 K of Li₂TiTeO₆ (Band and DOS are presented in main text).

Figure S2. Energy variations under the AIMD simulations and phonon spectra at 300 K of K₂ZrTeO₆ (Band and DOS are presented in main text).

Figure S3. Energy variations under the AIMD simulations and phonon spectra at 300, 500, 700 and 900 K of K₂HfSeO₆ (Band and DOS are presented in main text).

Figure S4. Energy variations under the AIMD simulations and phonon spectra at 300 K of states of Na₂TiTeO₆.

Figure S5. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Li₂ZrTeO₆.

Figure S6. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Na₂ZrTeO₆.

Figure S7. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Li₂HfTeO₆.

Figure S8. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Na₂HfTeO₆.

Figure S9. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of K₂HfTeO₆.

Figure S10. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Li₂TiSeO₆.

Figure S11. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Na₂TiSeO₆.

Figure S12. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Li₂ZrSeO₆.

Figure S13. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Na₂ZrSeO₆.

Figure S14. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Li₂HfSeO₆.

Figure S15. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of Na₂HfSeO₆.

3 The results of AIMD and phonon spectra of unstable ABB'O

Figure S16. Energy variations under the AIMD simulations and phonon spectra at 300 K of K₂TiTeO₆.

Figure S17. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of K₂TiSeO₆.

Figure S18. Energy variations under the AIMD simulations, phonon spectra at 300 K, energy band and density of states of K₂ZrSeO₆.

4 Calculated bandgap by different functionals and experimental value

for LTTO

LTTO 2.38

Table S1. Calculated bandgap (in unit of eV) by different functionals and experimental value for LTTO									
PBE	PW91	RPBE	PBEsol	AM05	SCAN	MBJ	HSE06	Exp.	

2.35

2.34

3.29

3.69

2.81

3.67

5	Elastic stiffness	constants

2.38

2.43

Table S2. Elastic stiffness	constants	C_{ij}	of A ₂ BB'O ₆
-----------------------------	-----------	----------	-------------------------------------

formula	Tensor C_{ij} (GPa)								
	C_{11}	C_{12}	C_{13}	C_{22}	C_{23}	C_{33}	C_{44}	C_{55}	C_{66}
${\rm Li}_2{\rm TiTeO}_6$	258.82	90.61	116.07	358.51	100.26	261.07	113.53	143.45	122.52
$Na_2 TiTeO_6$	248.27	75.79	98.80	302.78	89.07	219.04	99.13	118.67	96.80
$\rm Li_2ZrTeO_6$	237.25	92.37	117.53	331.71	103.45	240.35	108.09	136.59	112.99
Na_2ZrTeO_6	228.04	76.42	103.03	291.54	88.16	212.81	94.83	118.25	91.57
$K_2 Zr TeO_6$	247.18	78.97	97.67	263.93	89.18	190.32	93.31	107.69	85.78
${\rm Li}_{2}{\rm HfTeO}_{6}$	244.43	92.85	121.22	350.11	102.27	259.32	114.61	144.70	120.71
Na_2HfTeO_6	242.37	83.21	110.39	314.20	91.42	230.29	103.45	128.93	103.24
K_2HfTeO_6	255.07	80.21	98.65	272.74	89.87	197.08	97.39	110.62	90.73
${\rm Li}_2{\rm TiSeO}_6$	284.61	80.33	108.60	365.67	100.13	274.59	118.73	141.82	121.57
$Na_2 Ti SeO_6$	271.59	68.79	88.26	305.73	90.38	226.73	106.27	113.49	98.68
$\rm Li_2ZrSeO_6$	265.01	81.35	109.14	337.92	102.12	248.75	111.47	132.54	109.65
$Na_2 Zr SeO_6$	257.55	72.82	96.56	300.13	91.60	220.36	102.43	116.48	94.10
$\rm Li_2HfSeO_6$	273.71	82.88	113.35	358.63	102.45	267.26	118.44	141.58	118.18
Na_2HfSeO_6	266.19	74.09	98.52	313.90	91.43	231.10	107.91	121.27	101.01
K_2HfSeO_6	273.09	73.94	83.48	269.73	86.96	191.51	100.06	98.01	90.79

6 Total dipole moment of unit cell

Figure S19. Total dipole moment of unit cell with different atoms at (a) A-site, (b) B-site and (c) B'-site of ABB'O.

7 THz adsorption spectrum of ABB'O

Figure S20. Calculated THz absorption spectra of ABB'O (others are presented in main text).