Supplementary Information to

The role of the oxime group in the excited state deactivation processes of indirubin

Danîela C. Nobre^a, Estefanía Delgado-Pinar^{a,b}, Carla Cunha^a, J. Sérgio Seixas de Melo^a*

^aUniversity of Coimbra, CQC-ISM, Department of Chemistry, P3004-535 Coimbra,

Portugal

^bInstituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de

Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain

* email: sseixas@ci.uc.pt

Table of Contents

Synthesis of the indirubin derivatives	3
Synthesis of the oxime-indirubin derivatives	4
Time-Dependent Density Functional Theoretical Calculations	12
References	16

Synthesis of the indirubin derivatives

The synthesis of the indirubin derivatives (see **Scheme SI1**) was achieved by following the general procedure described by Russell and Kaupp^{1,2}. Although the synthetic protocol is well-known, some modifications in the work-up and in the purification, step should be added in order to avoid the formation of non-desirable indigo compound³. Very briefly, anhydrous methanol was degassed by bubbling nitrogen directly into the solution for 20 min. Then, 3-indoxyl acetate (200 mg, 1.14 mmol), potassium carbonate (1.9 mmol) and the corresponding isatin derivative (1.14 mmol) were added, under stirring, to the round bottom flask keeping the nitrogen bubbling for another 45 min. In all cases, a precipitate is formed, collected by filtration and washed with the appropriate solvent. The purification by column chromatography was performed depending on the derivative.

N-methylindirubin (MINR) and indirubin (INR) were prepared following ref.³ and ¹H, ¹³C and excitation spectra were used to characterize them and check their purity grade.

6-Bromoindirubin (6-BrINR), (2'Z)-6-Bromoindirubin. 6-bromoisatin was used (258 mg) for the synthesis of (**6-BrINR**). The precipitated obtained was washed with methanol and cold dichloromethane. The filtrate was dried under vacuum and a reddish solid was obtained (323 mg, 83%).

¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 8.63 (d, J = 8.3 Hz, 1H, H4), 7.63 (d, J = 7.3 Hz, 1H, H4'), 7.57 (t, J = 7.1 Hz, H6'), 7.39 (d, J = 8.1 Hz, H7'), 7.13 (dd, J = 8.3, 2.0 Hz, H5), 7.03-7.00 (m, H5'-H7). ¹³C NMR (101 MHz, DMSO-d₆) δ (ppm): 188.6 (C3'), 171.7 (C2), 152.3 (C2'), 144.3 (C7'a), 138.23 (C7a), 136.9 (C6'), 125.6 (C4), 124.2 (C4'), 122.9 (C5), 121.3 (C3a), 121.1 (C5'), 120.9 (C3'a), 118.8 (C6), 113.3 (C7), 112.4 (C7'), 106.1 (C3). ESI-MS (m/z): Calculated for C₁₆H₉BrN₂O₂: 341.16; Found [L + H]⁺: 342.98

R = H, R' = H; INR R = Br, R' = H; 6-BrINR $R = H, R' = CH_3;$ MINR

Scheme SI1. Synthetic pathway for the synthesis of INR, 6-BrINR and MINR.

Synthesis of the oxime-indirubin derivatives

Scheme SI2. Chemical structures of the indirubin derivatives studied in this work.

Fig. SI2 ¹³C NMR spectrum of 6-BrINR in DMSO-d₆.

Fig. SI3 HSQC NMR spectrum of 6-BrINR in DMSO-d₆.

Fig. SI4 Mass spectrum of 6-BrINR.

Fig. SI5 ¹H NMR spectrum of INROx in DMSO-d₆.

Fig. SI6 ¹³C NMR spectrum of INROx in DMSO-d₆.

Fig. SI7 HSQC NMR spectrum of INROx in DMSO-d₆.

Fig. SI8 Mass spectrum of INROx.

Fig. SI9 ¹H NMR spectrum of MINROx in DMSO-d₆.

Fig. SI10 ¹³C NMR spectrum of MINROx in DMSO-d₆.

Fig. SI11 HSQC NMR spectrum of MINROx in DMSO-d₆.

Fig. SI12 Mass spectrum of MINROx.

Fig. SI13 ¹H NMR spectrum of 6-BrINROx in DMSO-d₆.

Fig. SI14 ¹³C NMR spectrum of 6-BrINROx in DMSO-d₆.

Fig. SI15 HSQC NMR spectrum of 6-BrINROx in DMSO-d₆.

Fig. SI16 Mass spectrum of 6-BrINROx.

Time-Dependent Density Functional Theoretical Calculations

Fig. SI17 Energy difference between the ground state and the first keto singlet excited-state (K- $S_1 \rightarrow K-S_0$) for INR and INROx in dioxane.

Fig. SI18 Simplified scheme representing the conformational possibilities (structures or conformers A, B, and C) of the oxime-indirubin derivative (INROx).

Fig. SI19 Energetically more favourable molecular structures, obtained from TDDFT calculations, for the oxime-indirubin derivatives.

Table SI1. Decay time values, τ_i , obtained from femtosecond Transient Absorption (fs-TA) and femtosecond fluorescence Up Conversion (fs-UC) measurements for INR, INROx, 6-BrINROx, and MINROx, with associated errors, at T=293 K in solvents with varying polarity and viscosity.

Comp	Solvent	fs-	ТА	fs-UC		
Comp.	Solvent	τ ₁ (ps)	τ ₂ (ps)	τ ₁ (ps)	τ ₂ (ps)	
	Dx	-	38	3	37	
	MeOH	2	12	-	-	
11\\\."/	DMF	1.8	14	1	8	
	Glycerol	16 50		-	-	
	Dx	0.80±*0.27	6.81±0.12	0.59±0.20	4.03±0.46	
	THF	0.74±*0.12	4.99±0.76	0.48±0.20	3.47 ± 0.52	
INDO-	MeOH	0.72±*0.31	3.71±0.13	-	-	
INKOX	DMF	0.61±*0.12	3.28 ± 0.78	-	-	
	ACN	0.63±*0.24 3.03±0.57		0.58±0.20	2.26±0.18	
	Glycerol	4.03±0.26	92.9±0.81	-	-	
	Dx	1.12±*0.28	7.85±0.85	0.9±0.41	4.69±0.44	
	THF	0.93±*0.11	5.60±0.59	0.7±0.35	3.29±0.31	
0-DI IINKUX	DMF	0.91±*0.24	5.28 ± 0.72	-	-	
	ACN	0.42±*0.13	4.13±0.66	0.6±0.20	2.53±0.31	
MINROx	Dx	0.80±*0.17	6.79±0.10	0.34±0.23	4.07±0.36	
	THF	0.58±*0.36	4.61±0.26	0.5±0.29	4±0.66	
	DMF	0.59±*0.14	4.39±0.10	-	-	
	ACN	0.50±*0.13	3.50±0.98	0.3±0.20	2.23±0.18	

Table SI2. Bond distance between the oxygen in C=O and the hydrogen in N-H for the oximeindirubin derivatives (INROx, 6-BrINROx and MINROx) obtained using TDDFT calculations in different solvents. The data were obtained at the DFT//LC-BPBE level of theory (ω =0.2).

Compound	Solvent	d _{C=ON-H}	∆d _{c=0N+H} (pm)		
		S ₀	S ₁		
	Dx	174.1	162.1	12	
INROx	THF	175.2	165.3	9.9	
	DMF	174.5	165.0	9.5	
	ACN	173.8	164.6	9.2	
	Dx	174.9	164.8	10.1	
6-BrINROx	THF	175.6	166.5	9.1	
	DMF	175.9	168.9	7.0	
	ACN	175.5	167.8	7.7	
	Dx	175.2	163.5	11.7	
MINROx	THF	175.1	166.4	8.7	
	DMF	176.9	165.8	11.1	
	ACN	176.9	167.2	9.7	

Fig. SI20 Orbital contours of the HOMO and LUMO for indirubin (INR) and oxime-indirubin (INROx) in dioxane.

Table SI3. Wavelength absorption and emission maxima, along with oscillator strengths (*f*), for the keto and enol forms of the indirubin-3'-oxime (INROx) obtained using TDDFT calculations in different solvents. The data were obtained at the DFT//LC-BPBE level of theory (ω =0.2).

	GS absorption		Emission		TA (transient absorption)			
Solvent	nm	f	Species	nm	f	nm	f	S_1 to S_n
			keto	545	0.306	569	0.220	$S_1 \rightarrow S_7$
Dx	476	0.340	enol	617	0.199	693	0.248	$S_1 \rightarrow S_3$
			chor			658	0.046	$S_1 \rightarrow S_4$
			keto	558	0.384	575	0.222	$S_1 \rightarrow S_7$
THF	473	0.339	enol	618	0.260	700	0.241	$S_1 \rightarrow S_3$
			chior	010	0.200	658	0.044	$S_1 \rightarrow S_4$
			keto	566	0.414	576	0.227	$S_1 \rightarrow S_7$
DMF	474	0.343	enol	625	0 287	694	0.242	$S_1 \rightarrow S_3$
			025 0.287	chor	025	655	0.045	$S_1 \rightarrow S_4$
ACN	471	0.331	keto	567	0.415	576	0.224	$S_1 \rightarrow S_7$
			enol	621	0.288	696	0.240	$S_1 \rightarrow S_3$
					021		658	0.047

Table SI4. Wavelength absorption and emission maxima, along with oscillator strengths (*f*), for the keto and enol forms of the 6-Bromoindirubin-3'-oxime (6BrINROx) obtained using TDDFT calculations in different solvents. The data were obtained at the DFT//LC-BPBE level of theory (ω =0.2).

GS absorption			Emission		TA (transient absorption)					
Solvent	nm	f	Species	nm	f	nm	f	S ₁ to S _n		
			keto	546	0.335	567	0.237	$S_1 \rightarrow S_7$		
Dx	478	0.375	enol	617	0 212	667	0.050	$S_1 \rightarrow S_3$		
			Chor	017	0.212	656	0.182	$S_1 \rightarrow S_4$		
			keto	560	0.406	574	0.234	$S_1 \rightarrow S_7$		
THF	475	0.374	enol	617	0 270	669	0.071	$S_1 \rightarrow S_3$		
			Chor	017	0.270	658	0.157	$S_1 \rightarrow S_4$		
			keto	564	0.436	577	0.235	$S_1 \rightarrow S_7$		
DMF	476	0.377	enol	61/	0 306	673	0.110	$S_1 \rightarrow S_3$		
			CHOI	Chor	CHOI	014	0.500	663	0.127	$S_1 \rightarrow S_4$
			keto	566	0.436	576	0.234	$S_1 \rightarrow S_7$		
ACN	473	0.367	enol	615	0 207	674	0.097	$S_1 \rightarrow S_3$		
			CHOI	015	0.507	665	0.141	$S_1 \rightarrow S_4$		

Table SI5. Wavelength absorption and emission maxima, along with oscillator strengths (*f*), for the keto and enol forms of the *N*-methylindirubin-3'-oxime (MINROx) obtained using TDDFT calculations in different solvents. The data were obtained at the DFT//LC-BPBE level of theory (ω =0.2).

	GS abs	sorption		Emission		TA (transient absorption)				
Solvent	nm	f	Species	nm	f	nm	f	S_1 to S_n		
			keto	543	0.320	570	0.223	$S_1 \rightarrow S_7$		
Dx	476	0.352	enol	615	0.213	706	0.304	$S_1 \rightarrow S_3$		
						655	0.050	$S_1 \rightarrow S_4$		
			keto	557	0.397	576	0.224	$S_1 \rightarrow S_7$		
THF	473	0.351	enol	617	0 278	710	0.298	$S_1 \rightarrow S_3$		
				017	17 0.270	653	0.052	$S_1 \rightarrow S_4$		
			keto	565	0.426	576	0.229	$S_1 \rightarrow S_7$		
DMF	472	0.354	enol	61/	0 212	713	0.299	$S_1 \rightarrow S_3$		
			0.101	012			0.512	652	0.055	$S_1 \rightarrow S_4$
ACN	470	0.343	keto	563	0.429	578	0.226	$S_1 \rightarrow S_7$		
			enol	620	0.205	708	0.293	$S_1 \rightarrow S_3$		
					0.303	655	0.051	$S_1 \rightarrow S_4$		

References

- 1. G. A. Russell and G. Kaupp, *Journal of the American Chemical Society*, 1969, **91**, 3851-3859.
- R. Hoessel, S. Leclerc, J. A. Endicott, M. E. M. Nobel, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie, D. Marko, E. Niederberger, W. Tang, G. Eisenbrand and L. Meijer, *Nature Cell Biology*, 1999, 1, 60-67.
- 3. D. C. Nobre, E. Delgado-Pinar, C. Cunha, A. M. Galvão and J. S. Seixas de Melo, *Dyes and Pigments*, 2023, **212**, 111116.