## **Supporting Information**

## Varying the degree of oxidation of graphite: Effect of the oxidation time and the oxidant mass

Ioannis Karnis,<sup>1,2</sup> Fanourios Krasanakis,<sup>1</sup> Labrini Sygellou,<sup>3</sup> Anastassia N. Rissanou,<sup>1,4</sup> Konstantinos Karatasos,<sup>5</sup> and Kiriaki Chrissopoulou<sup>1,\*</sup>

<sup>1</sup>Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 711 10, Heraklion Crete, Greece
<sup>2</sup>Department of Chemistry, University of Crete, Heraklion Crete, Greece
<sup>3</sup>Institute of Chemical Engineering Studies, Foundation for Research and Technology-Hellas, Stadiou Str, 26504 Patras, Greece
<sup>4</sup>Institute of Theoretical and Physical Chemistry, National Hellenic Research Foundation, 48 Vassileos Konstantinou Ave, 11635 Athens, Greece
<sup>5</sup>Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece



**Figure S1**: O1s peak deconvolution for O functional groups determination in GO oxidized with 2 g of oxidant during (a)15 min, (b) 1h and (c) 3h of oxidation reaction.



*Figure S2: SEM images of graphite (a) and of GOs oxidized during 1h with 0.5g (b), 1.5g (c) and 6g (d) of oxidizing agent.* 



*Figure S3:* Raman spectra for GO samples synthesized during 1h oxidation time and different amounts of oxidant agent. The spectrum of graphite is shown for comparison as well.