Supporting information of

Salinity and pH effect on water-oil-calcite interfaces by molecular dynamics

Authors

Anderson Arboleda-Lamus^a, Leonardo Muñoz-Rugeles^a, Jorge M. del Campo^b, Nicolas Santos-Santos^c, Julio Pérez^c and Enrique Mejía-Ospino^{a,c}

a Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Universidad Industrial de Santander, Bucaramanga, Colombia

E-mail: emejia@uis.edu.co

b Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México

c Grupo de Investigación en Tomografía Computarizada para Caracterización de Yacimientos (GIT), Universidad Industrial de Santander, Bucaramanga, Colombia

Phase	Atom type	Charge (e)	A12 (kcal/mol)	B6 (kcal/mol)
ate	C_calcite	-0.999	3441682.6004	1101.8164
uoq	Ca_calcite	+1.668	60229.4455	339.3881
Car	O_calcite	-0.889	423040.1530	485.1816
	Na_ion	+1	20648.4015	15.1310
	Ca_ion	+2	69748.1484	354.1901
Its	Mg_ion	+2	1368.9918	69.2222
Sal	Cl_ion	-1	26000401.2760	3500.0486
	O_sulfate_ion	-1.1	954391.6818	976.9297
	S_sulfate_ion	+2.4	4006270.2004	2001.5669
ter	H_water	+0.417	0.0000	0.0000
Wa	O_water	-0.834	582202.1981	595.1570
	C2	-0.12	892114.2141	485.3021
aue	C3	-0.18	892114.2141	485.3021
I febt	H2	+0.06	7152.5574	29.2969
	H3	+0.06	7152.5574	29.2969
	C11	+0.7	3248063.4400	1167.9840
	C21	-0.12	892114.2141	485.3021
ate	C22	-0.12	892114.2141	485.3021
T tauc	C31	-0.18	811012.9219	441.1838
He He	H21	+0.06	7152.5574	29.2969
	H31	+0.06	7152.5574	29.2969
	O21	-0.8	379996.6945	564.9754
	C11	+0.52	3248063.4400	1167.9840
	C21	-0.12	892114.2141	485.3021
loid	C31	-0.18	892114.2141	485.3021
	H11	+0.45	0.0000	0.0000
	H21	+0.06	7152.5574	29.2969
He He	H31	+0.06	7152.5574	29.2969
	O11	-0.53	578580.8310	627.2439
	O12	-0.44	379996.6945	564.9754

Table S1. Individual parameters.

Atom type 1	Atom type 2	A12 (kcal/mol)	B6 (kcal/mol)
C_calcite	C_calcite	1101816.44359	3417.78203
C_calcite	Ca_calcite	0.00000	0.00000
C_calcite	O_calcite	216.06119	73.61377
Ca_calcite	Ca_calcite	0.00000	0.00000
Ca_calcite	O_calcite	226816.44359	0.00000
O_calcite	O_calcite	141969.40727	12.45220
C_calcite	H_water	0.00000	0.00000
C_calcite	O_water	1412523.90057	810.22945
Ca_calcite	H_water	0.00000	0.00000
Ca_calcite	O_water	211520.07648	478.01147
O_calcite	H_water	1907.26577	0.23064
O_calcite	O_water	494741.87380	537.76291

Tabla S2. Combinated parameters.

	Crude oil model composition (disperse phase)/Smart water composition (continues phase)	Molecules numbers	Polar compounds concentration (ppm)/Salt concentration (ppm)	рН	
on-polar crude oil model	Water/heptane	1453 / 1264	/		
	Heptane/water	156 / 11777	/		
	Heptane/NaCl – water	156 / (11+ 11-) - 11777	/ 3000		
		156 / (112+ 112-) - 11777	/ 30000		
	$Heptane/CaCl_2 - water$	156 / (6+ 12-) - 11777	/ 3000		
		156 / (59+ 118-) - 11777	/ 30000		
	Heptane/CaSO ₄ - water	156 / (4 ⁺ 4 ⁻) – 11777	/ 2600		
		156 / (42+ 42-) - 11777	/ 26000		
	Heptane/MgSO ₄ - water	156 / (5+ 5-) - 11777	/ 3000		
		156 / (55+ 55-) - 11777	/ 30000		
∠	Heptanoate – heptane/Na ⁺ – water	30 - 156 / 30 - 11777	198652 /		
	$Heptanoate-heptane/Ca^{2+}-water \\$	30 - 156 / 15 - 11777	198652 /		
	$Heptanoate-heptane/Mg^{2+}-water \\$	30 - 156 / 15 - 11777	198652 /		
	Heptanoate – heptane/NaCl – water	30 - 156 / (11+ 11-) - 11777	198652 / 3000		
Polar crude oil model		30 - 156 / (112 ⁺ 112 ⁻) - 11777	198652 / 30000	>> 4.4	
	$Heptanoate-heptane/Na_2SO_4-water \\$	30 - 156 / (38+ 4-) - 11777	198652 / 3000		
	Heptanoate – heptane/Ca Cl_2 – water	30 - 156 / (122+ 46-) - 11777	198652 / 30000		
		30 - 156 / (6+ 12-) - 11777	198652 / 3000		
		30 - 156 / (59+ 118-) - 11777	198652 / 30000		
	$Heptanoate-heptane/CaSO_4-water\\$	30 - 156 / (4+ 4-) - 11777	198652 / 2600		

Table S3. Systems evaluated on the surface affinity of surface (104) of calcite to crude oil models in the SW models at different conditions.

	30 - 156 / (42+ 42-) - 11777	198652 / 26000	
$Heptanoate-heptane/MgCl_2-water \\$	30 - 156 / (22+ 14-) - 11777	198652 / 3000	
	30 - 156 / (83+ 136-) - 11777	198652 / 30000	
$Heptanoate-heptane/MgSO_4-water \\$	30 - 156 / (5+ 5-) - 11777	198652 / 3000	
	30 - 156 / (55+ 55-) - 11777	198652 / 30000	
Heptanoic acid – heptanoate – heptane/Na ⁺ – water	15 - 15 - 156 / 15 - 11777	100023 - 99249 /	
Heptanoic acid – heptanoate – heptane/NaCl – water	15 – 15 – 156 / (26+ 11-) – 11777	100023 - 99249 / 3000	
		100023 - 99249 / 30000	= 4.4
	15 – 15 – 156 / (127 ⁺ 112 ⁻) – 11777		
Heptanoic acid – heptane/water	15 - 156 / 11777	199892 /	
			<< 1 1
Heptanoic acid – heptane/NaCl – water	15 - 156 / (11+ 11-) - 11777	199892 / 3000	~~ 7.7
	$15 - 156 / (112^+ 112^-) - 11777$	199892 / 30000	

Note: ⁺ and ⁻ above the numbers correspond to the number of cations and anions in water, respectively. The concentrations in the crude oil models correspond to polar molecules in heptane. "=" equal to, "<<" much less than, and ">>" much greater than.

Figure S1. Distribution of cations, distribution of anions, and the one-dimensional mass water density profile of SW models on the calcite surface at LSCC. a) NaCl SW. b) Na₂SO₄ SW. c) CaCl₂ SW. d) CaSO₄ SW. e) MgCl₂ SW. f) MgSO₄ SW. These profiles were averaged for 8 ns.

Figure S2. Distribution of cations, distribution of anions, and the one-dimensional mass water density profile of SW models on the calcite surface at HSCC. a) NaCl SW. b) Na₂SO₄ SW. c) CaCl₂ SW. d) CaSO₄ SW. e) MgCl₂ SW. f) MgSO₄ SW. These profiles were averaged for 8 ns.

Figure S3. a) Normalized *rdf* of $Na^+ - O_{H_20}$, $Ca^{2+} - O_{H_20}$, $Mg^{2+} - O_{H_20}$, $SO_4^2 - H_{H_20}$ and $Cl^- - H_{H_20}$ at LSCC. b) Coordination number of $Na^+ - O_{H_20}$, $Ca^{2+} - O_{H_20}$, $Mg^{2+} - O_{H_20}$, $SO_4^2 - H_{H_20}$ and $Cl^- - H_{H_20}$ and $Cl^- - H_{H_20}$ and $Cl^- - H_{H_20}$ at LSCC. Theses profiles were averaged for 8 ns.

Figure S4. Height of droplet Hds of non-polar crude oil model (non-polar or heptane) in the SW models at pH ==7 and 298.15 K versus simulations time in the production stage. a) At LSCC. b) At HSCC.

Figure S5. Height of droplet Hds of polar crude oil model (heptanoate – heptane) in the SW models at pH >> 4.4 versus simulations time in the production stage. a) At LSCC. b) At HSCC.

Figure S6. Height of droplet Hds of polar crude oil model (heptanoic acid – heptanoate – heptane) in the SW models at pH = 4.4 versus simulations time in the production stage.

Figure S7. Height of droplet Hds of polar crude oil model (heptanoic acid – heptane) in the SW models at pH << 4.4 versus simulations time in the production stage.

Figure S8. Salinity effect of the SW models on the height of the droplet (H_{ds}) of non-polar crude oil model (heptane) on the calcite surface. Each H_{ds} was calculated for 1 ns and averaged by 5 ns in the production stage.

Figure S9. Effect of the SW models salinity at pH >> 4.4 on the H_{ds} of the droplet of polar crude oil model (heptanoate – heptane) on the calcite surface. Each H_{ds} was calculated for 1 ns and averaged to 8 ns in the production stage.

Figure S10. Effect of pH of the NaCl SW model on the height of droplet (H_{ds}) of polar crude oil model on the calcite surface. Each H_{ds} was calculated for 1 ns and averaged to 8 ns in the production stage.

Figure S11. Distribution of cations, distribution of anions, and the one-dimensional mass water density profile of the SW models at pH >> 4.4, distribution of carboxylate groups, and the number of heptanoate between 0 and 7.5 Å (green area) of the polar crude oil model (heptanoate – heptane), on the calcite surface at LSCC. a) NaCl. b) Na₂SO₄.
c) CaCl₂. d) CaSO₄. e) MgCl₂. f) MgSO₄. These profiles were averaged for 8 ns.

Figure S12. Distribution of cations, distribution of anions, and the one-dimensional mass water density profile of the SW models at pH >> 4.4, distribution of carboxylate groups, and the number of heptanoate between 0 and 7.5 Å (green area) of the polar crude oil model (heptanoate – heptane), on the calcite surface at HSCC. a) NaCl. b) Na₂SO₄. c) CaCl₂. d) CaSO₄. e) MgCl₂. f) MgSO₄. These profiles were averaged for 8 ns.