Electronic Supplementary Information

B-Embedded Disulfide-Bridged π -Conjugated Compounds: Structures and Optical Tuning

Kaishun Ye,¹ Gang Li,^{1,4} Feiyang Li,¹ Chao Shi,^{1*} Zhen Jiang,¹ Fuzheng Zhang,¹ Qiuxia Li,^{1*} Jie Su,¹ Dandan Song,^{2,3*} and Aihua Yuan¹

¹ School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.

² Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China.

³ Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China.

⁴ CSMC Technologies Fab2 Co., Ltd, Wuxi, 214028, China.

Corresponding Authors' E-mail address

* shichao@just.edu.cn

* liqiuxia2019@just.edu.cn

* ddsong@bjtu.edu.cn

Contents:

General information	S2
Synthesis and characterization	S2
X-ray crystal structure analysis	S4
Solvatochromic PL	S7
TG thermograms	S8
Cyclic voltammetry	S8
DFT calculation	S9
OLED	Device
characterization	S10
NMR spectra	S11
Mass spectra	S15
Pafaranaaa	S17

General information

Unless noted, all reagents or solvents were obtained from commercial suppliers and used without further purification. All air sensitive experiments were performed in N₂ atmosphere through schlenk technology. The NMR spectra were measured by using a Bruker 400 MHz MHz spectrometer at room temperature. Mass spectra were conducted at Agilent Technologies 5973N (EI). A Hitachi F-4600 fluorescence spectrophotometer was used to measure phosphorescence spectral. An Edinburgh FLS-980 spectrometer was used to determine phosphorescence quantum efficiency and lifetimes of the molecules in solution. The experiments for cyclic voltametric were performed by using three electrode cell assemblies from an IM6ex instrument (Zahner). A one-compartment cell equipped with a platinum wire counter electrode, a Ag/Ag⁺ reference electrode, and a glassy-carbon working electrode was used for all measurements with a scan rate of 100 mVs⁻¹. The concentration of tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) in dichloromethane solution was 0.10 molL⁻¹ and used as supporting electrolyte.

Synthesis and characterization

Figure S1. The synthetic routes of B-embedded disulfide-bridged π -conjugated molecules **BS-CZ**, and **BS-N**.

SBr: 2,5-dibromo-1,3-difluorobenzene (5.44 g, 0.02 mol) and sodium benzenethiolate (5.29 g, 0.04 mol) were were added into a double-neck bottle, followed by N-methylpyrrolidone (20 mL) under nitrogen atmosphere. Then the mixture was stirred at 170 °C for 3 h. The reaction mixture was cooled to room temperature, followed by water and extracted with ethyl acetate three times. The combined organic phase was dried and concentrated in vacuum, and target product was purified by column chromatography on silica gel with CH_2Cl_2 / petroleum ether 1 : 6 (v/v) to afford white solid. 6.2 g (65 %). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (m, 4H), 7.45 (dp, *J* = 4.8, 1.8 Hz, 6H), 6.58 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 134.9, 131.4, 130.2, 129.7, 127.1, 122.0, 118.5. $C_{18}H_{12}Br_2S_2$ calcd: C, 47.81; H, 2.67. Found: C, 47.79; H, 2.71. EI-MS (*m/z*): 452.2 (M⁺, 100 %).

BS-Br: SBr (1.35 g, 3.0 mmol) was charged to a 100 mL schlenck tube, followed by *m*-xylene (15 mL) under nitrogen atmosphere. *n*-BuLi (1.56 mL, 3.9 mmol) was added at 0 °C, and the resulting mixture was stirred for 20 min at 0 °C. Then, the mixture was warmed up to room temperature and stirred for another 1 h. BBr₃ (0.375 mL, 3.9 mmol) was added at 0 °C and the mixture was stirred for 20 min at 0 °C, then the mixture was warmed up to room temperature and stirred for 50 min. Ethyldiisopropylamine (1.03 mL, 5.84 mmol) was added at 0 °C, then the mixture was heated to 150 °C and stirred for 12 h. The resulting solution was saturated with sodium acetate solution and extracted with CH₂Cl₂ three times. The combined organic phase was dried and concentrated in vacuum to afford white solid, 0.74 g (65 %). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.71 (m, 4H), 7.59 (ddd, *J* = 8.0, 7.2, 1.5 Hz, 2H), 7.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 142.8, 138.7, 131.2, 129.4, 125.6, 125.5, 124.8, 123.8, 115.2. C₁₈H₁₀BBrS₂ calcd: C, 56.73; H, 2.64. Found: C, 56.70; H, 2.68. EI-MS (*m*/*z*): 381.2 (M⁺, 100 %).

BS-CZ: BS-Br (0.076 g, 0.2 mmol), 1a (0.069 g, 0.24 mmol), tetrakis(triphenylphosphine)palladium (0.0114 g, 0.01 mmol) and K₂CO₃ (0.55 g, 4 mmol) were added into a schlenck tube, followed by water (2.00 mL) and 1,4-Dioxane (4.00 mL). The mixture was stirred at 100 °C for 24 h under nitrogen atmosphere. The resulting solution was saturated with water and extracted with dichloromethane three times. The combined organic phase was dried and concentrated in vacuum, and target product was purified by column chromatography on silica gel with CH₂Cl₂/petroleum ether 1 : 3 (v / v) to afford yellow solid, 0.075 g (69 %). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, *J* = 7.7, 1.5 Hz, 2H), 8.17 (dt, *J* = 7.7, 1.0 Hz, 2H), 7.95 (m, 2H), 7.91 (s, 2H), 7.79 (d, *J* = 1.1 Hz, 1H), 7.77 (d, *J* = 1.1 Hz, 1H), 7.73 (d, *J* = 2.1 Hz, 1H), 7.71 (d, *J* = 2.0 Hz, 1H), 7.61 (m, 2H), 7.47 (m, 6H), 7.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 143.5, 140.8, 139.7, 138.7, 134.6, 131.6, 131.1, 129.1, 127.6, 126.2, 125.7, 125.3, 123.6, 122.9, 120.5, 120.3, 120.0, 110.9, 110.0. C₃₆H₂₂BNS₂ calcd: C, 79.56; N, 2.58; H, 4.08. Found: C, 79.53; N, 2.56; H, 4.11. EI-MS (*m/z*): 544.2 ((M+1)⁺, 100 %).

BS-N: BS-Br (0.152 g, 0.4 mmol), 1b (0.172 g, 0.6 mmol), Tetrakis(triphenylphosphine)palladium

(0.0228 g, 0.02 mmol) and K₂CO₃ (0.55 g, 4 mmol) were added into a schlenck tube, followed by water (2.00 mL) and 1,4-Dioxane (4.00 mL). The mixture was stirred at 100 °C for 24 h under nitrogen atmosphere. The resulting solution was saturated with water and extracted with dichloromethane three times. The combined organic phase was dried and concentrated in vacuum, and target product was purified by column chromatography on silica gel with CH₂Cl₂/petroleum ether 1 : 3 (v / v) to afford yellow solid, 0.142 g (65 %). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, *J* = 7.8, 1.4 Hz, 2H), 7.78 (s, 2H), 7.74 (dd, *J* = 8.2, 1.2 Hz, 2H), 7.67 (td, *J* = 7.3, 1.7 Hz, 4H), 7.44 (td, *J* = 7.6, 1.2 Hz, 2H), 7.30 (m, 4H), 7.16 (m, 6H), 7.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 144.0, 143.6, 142.5, 138.6, 135.3, 132.8, 130.9, 129.5, 128.3, 125.7, 125.2, 125.0, 123.5, 123.4, 119.4, 116.5, 103.3. C₃₆H₂₄BNS₂ calcd: C, 79.26; N, 2.57; H, 4.43. Found: C, 79.23; N, 2.56; H, 4.45. EI-MS (*m*/z): 545.3 (M⁺, 100 %).

X-ray crystal structure analysis

Single-crystals of **BS-CZ** and **BS-N** were both obtained by slow solvent evaporation from the saturated mixed solution of CH_2CI_2 and ethanol. The X-ray diffraction data were collected on a Bruker Smart CCD Apex DUO diffractometer with graphite monochromated Cu K α radiation (λ = 1.54178 Å) using the ω -2 θ scan mode. All crystal datas are deposited in The Cambridge Crystallographic Data Centre (CCDC: 2251377 for **BS-CZ** and 2251378 for **BS-N**).

Complex	BS-CZ	BS-N
chemical formula	$C_{36}H_{22}BNS_2$	$C_{36}H_{24}BNS_2$
formula weight	543.47	545.49
crystal size (mm)	0.11 × 0.12 × 0.14	0.11 × 0.12 × 0.13
temperature (K)	150	150
radiation	1.54178	1.54178
crystal system	Monoclinic	Triclinic
space group	P21/c	P-1
a(Å)	9.1668(3)	12.1328(6)
b(Å)	13.6407(5)	12.2744(5)
<i>c</i> (Å)	20.9359(7)	19.0272(9)
<i>α</i> (°)	90	103.921(3)
β (°)	90.621(2)	97.005(3)

Table S1. Crystallographic Data for BS-CZ and BS-N.

90	98.421(3)
2617.70(16)	2684.0(2)
4	4
1.379	1.350
1128.0	1136
2.048	1.998
3.9 to 66.0	2.4 to 66.0
15058 (R _{int} = 0.034)	28738 (R _{int} = 0.042)
4549	9347
3654	7385
4549/0/361	9347/0/721
1.03	1.07
0.0644/0.1586	0.0765/0.2039
0.0729/0.1690	0.0872/0.2190
0.50/-0.19	0.79/-0.32
	90 2617.70(16) 4 1.379 1128.0 2.048 3.9 to 66.0 15058 (R _{int} = 0.034) 4549 3654 4549/0/361 1.03 0.0644/0.1586 0.0729/0.1690

Figure S2. Single crystal structure of **BS-CZ**, selected bond lengths (Å) and angles (°): B1–C1: 1.542(4), B1–C2: 1.547(4), B1–C3: 1.545(4), C8–C9: 1.490(4), N1–C10: 1.427(3), N1–C11: 1.399(3), N1–C12: 1.398(3), S1–C4: 1.759(3), S1–C7: 1.755(3), S2–C5: 1.764(3), S2–C6: 1.756(3), C1–B1–C3: 118.2(2), C1–B1–C2: 118.8(2), C2–B1–C3: 123.0(2), C4–S1–C7: 104.84(12), C5–S2–C6: 105.78(13), C10–N1– C11: 125.9(2), C10–N1–C12: 125.5(2), C11–N1–C12: 108.5(2).

Figure S3. Single crystal structure of **BS-N**, selected bond lengths (Å) and angles (°): B1–C1: 1.551(5), B1–C2: 1.561(5), B1–C3: 1.547(5), C8–C9: 1.489(4), N1–C10: 1.420(4), N1–C11: 1.425(4), N1–C12: 1.429(4), S1–C4: 1.748(4), S1–C7: 1.755(3), S2–C5: 1.751(4), S2–C6: 1.766(3), C1–B1–C3: 118.7(3), C1–B1–C2: 119.2(3), C2–B1–C3: 122.1(3), C4–S1–C7: 106.08(17), C5–S2–C6: 106.11(16), C10–N1–C11: 119.7(2), C10–N1–C12: 119.3(2), C11–N1–C12: 118.6(3).

Figure S4. Comparison of single crystal structures of B-embedded disulfide-bridged molecules (**BS-CZ** and **BS-N**) and B-embedded dioxygen-bridged molecules (**BO-CZ** and **BO-N**).

Figure S5. UV-visible absorption spectra and photoluminescence spectra of **BS-CZ** and **BS-N** in toluene $(2.0 \times 10^{-5} \text{ M})$ at room temperature.

Solvatochromic PL

Figure S6. PL spectra of **BS-CZ** in a variety of solvents with different polarities. (Excitation wavelength is 370 nm)

Figure S7. PL spectra of **BS-N** in a variety of solvents with different polarities. (Excitation wavelength is 370 nm)

Figure S8. Temperature-dependent PL spectra of BS-CZ and BS-N in toluene.

TG thermograms

Figure S9. TG thermograms of BS-CZ and BS-N.

Cyclic voltammetry

Figure S10. Cyclic voltammogram of BS-CZ and BS-N in degassed dichloromethane under the scan rate of 100 mV s⁻¹.

DFT calculation

DFT method was used to optimize the geometries all the complexes. The electronic transition energies and electron correlation effects were also calculated by (TD)-DFT method with the B3LYP functional (TD-B3LYP). The 6–31G(d) basis set was used to treat with all atoms. All calculations were carried out according to the Gaussian 09 program.¹ The natural transition orbitals (NTOs) for the transition to singlet and triplet excited states were analyzed by the Multiwfn 3.8 program.²

Figure S11. Optimized structures and dipole moment for **BS-CZ** and **BS-N** at the B3LYP/6-31G(d) level of theory.

Table S2. Calculated HOMC), LUMO and E_q	of BS-CZ and	BS-N.
---------------------------	-------------------	--------------	-------

Compounds	HOMO (eV)	LUMO (eV)	E _g (eV)
BS-CZ	-5.37	-2.04	3.33
BS-N	-5.03	-1.90	3.14

Table S3. Calculated energies and oscillator strengths of **BS-CZ** and **BS-N** for lowest-energy singlet (S_1) and triplet (T_1) transitions.

Compounds	states	E (eV)	Wavelength (nm)	Oscillator strength	main configurations (Cl coeff)
	S_1	2.96	418	0.1077	HOMO-1→LUMO (0.98)
BS-CZ	T ₁	2.50	495	0	HOMO-1→LUMO (0.97)
	T ₂	2.78	446	0	HOMO→LUMO (0.58)
	S_1	2.80	443	0.3473	HOMO→LUMO (0.99)
BS-N	T ₁	2.51	493	0	HOMO-1→LUMO (0.97)
	T ₂	2.52	492	0	HOMO→LUMO (0.75)

OLED Device characterization

The ITO coated glass substrates with a sheet resistance of 15 Ω square-1 were consecutively ultrasonicated with acetone/ethanol and dried with nitrogen gas flow, followed by 20 min ultraviolet lightozone (UVO) treatment in a UV-ozone surface processor (PL16 series, Sen Lights Corporation). Then the samples were transferred to the vacuum deposition system, and the organic layers were deposited at the rates of 0.2-3 Å/s sequentially. After the deposition of organic layers, 8-hydroxyquinolinolato-lithium (Liq) as electron injection layer and aluminum (AI) as cathode layer were deposited with rates of 0.1 and 3 Å/s, respectively by thermal evaporation under 5×10⁻⁵ Pa. The emitting area of the device is about 0.09 cm². The current density-voltage-luminance (*J-V-L*), *L-EQE* curves, and electroluminescence spectra were measured using a Keithley 2400 source meter coupled with an absolute EQE measurement system (C9920-12, Hamamatsu Photonics, Japan)

Figure S12. Configuration of the OLED and chemical structures for the materials involved.

Table S4. EL performance of the device for the compound BS-CZ a	and BS-N
---	-----------------

Compound	V _{on} a (V)	EQE _{max} b (%)	λ _{ems} c (nm)	FWHM ^d (nm)
BS-CZ	4.0	3.2	473	39
BS-N	4.5	1.6	485	70

^aVoltage in the luminance of 10 cd/m². ^bMaximum external quantum efficiency (EQE_{max}), ^cMaximum emission wavelength of the EL spectra. ^dThe full width at half maximum.

Figure S13. (a) EL spectra, (b) external quantum efficiency (EQE) versus luminance relationship and (c) current density-voltage-luminance (J–V–L) characteristics for the device of **BS-N**.

NMR spectra

¹H NMR (CDCI₃)

Figure S14. The ¹H NMR spectra of SBr.

Figure S15. The ¹³C NMR spectra of SBr.

Figure S16. The ¹H NMR spectra of BSBr.

Figure S17. The ¹³C NMR spectra of BSBr.

Figure S18. The ¹H NMR spectra of BS-CZ.

Figure S19. The ¹³C NMR spectra of **BS-CZ**.

Figure S20. The ¹H NMR spectra of **BS-N**.

Figure S21. The ¹³C NMR spectra of BS-N.

Mass spectra

Figure S22. The Mass spectra of SBr.

Figure S23. The Mass spectra of BS-Br.

Figure S24. The Mass spectra of BS-CZ.

Figure S25. The Mass spectra of BS-N.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.Bakken, C. Adamo, J. Jaram illo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
- T. Lu, F. W. Chen, Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* 2012, 33, 580.