Supporting Information

Proposals for gas-detection improvement of FeMPc monolayer towards ethylene and formaldehyde by using bimetallic synergy

Yingying Ma 1,2, Huihui Xiong 1,2*, Jianbo Zhang 2

1 School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China;
2 Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 34100, China

Contents:

Fig. S1 Action flowchart plot of exploring 2D FeMPc (M=3d transition metal) based gas sensor for the detection of H2CO and C2H4.

Fig. S2 Temperature and potential energy change of FeMPc monolayers in the AIMD simulations at 300 K. (a) FeTiPc, (b) FeVPc, (c) FeCrPc, (d) FeMnPc, (e) Fe2Pc, (f) FeCoPc, (g) FeNiPc, (h) FeCuPc and (i) FeZnPc.

Fig. S3 (a-d) Charge density difference (CDD) and (e-h) electronic local functional (ELF) of various adsorption systems: (a, e) Fe2Pc/C2H4, (b, f) FeCoPc/C2H4, (c, g) FeNiPc/C2H4 and (d, h) FeCuPc/C2H4.

Fig. S4 (a-d) Charge density difference (CDD) and (e-h) electronic local functional (ELF) of various adsorption systems: (a) Fe2Pc/H2CO, (b) FeCoPc/H2CO, (c) FeNiPc/H2CO and (d) FeCuPc/H2CO.

Fig. S5 Change of M-C/O bond length in different adsorption systems during the AIMD simulations at 300 K. (a) FeTiPc/C2H4, (b) FeTiPc/H2CO, (c) FeVPc/C2H4, (d) FeVPc/H2CO.

Fig. S6 Potential energy change of different adsorption systems during the AIMD simulations at 300 K. (a) FeTiPc/C2H4, (b) FeTiPc/H2CO, (c) FeVPc/C2H4, (d) FeVPc/H2CO.

* Corresponding author.
E-mail address: xionghui8888@126.com (H. Xiong).
Fig. S1. Action flowchart plot of exploring 2D FeMPc (M=3d transition metal) based gas sensor for the detection of H$_2$CO and C$_2$H$_4$.
Fig. S2. Temperature and potential energy change of FeMPC monolayers in the AIMD simulations at 300 K. (a) FeTiPc, (b) FeVPc, (c) FeCrPc, (d) FeMnPc, (e) Fe2Pc, (f) FeCoPc, (g) FeNiPc, (h) FeCuPc and (i) FeZnPc.
Fig. S3. The yellow and cyan region in CDD represent electron gain and loss, and the isosurface value is $\pm 0.002 \text{ e/Å}^3$.

Fig. S4. (a-d) Charge density difference (CDD) and (e-h) electronic local functional (ELF) of various adsorption systems: (a) Fe$_2$Pc/H$_2$CO, (b) FeCoPc/H$_2$CO, (c) FeNiPc/H$_2$CO and (d) FeCuPc/H$_2$CO. The yellow and cyan region in CDD represent electron gain and loss, and the isosurface value is $\pm 0.002 \text{ e/Å}^3$.
Fig. S5. Change of M-C/O bond length in different adsorption systems during the AIMD simulations at 300 K. (a) FeTiPc/C\(_2\)H\(_4\), (b) FeTiPc/H\(_2\)CO, (c) FeVPc/C\(_2\)H\(_4\), (d) FeVPc/H\(_2\)CO.

Fig. S6. Potential energy change of different adsorption systems during the AIMD simulations at 300 K. (a) FeTiPc/C\(_2\)H\(_4\), (b) FeTiPc/H\(_2\)CO, (c) FeVPc/C\(_2\)H\(_4\), (d) FeVPc/H\(_2\)CO.