Supplementary Materials

First principles study of strain effects on prospective 2D photocatalysts $Sn_2Se_2X_4$ (X = P, As) with ultra-high charge carrier mobility

Pham D. Trung, ^{a*} and Hien D. Tong ^{b*}

AFFILIATIONS

^{a.} Yersin University, 27 Ton That Tung, Ward 8, Dalat City, Lam Dong Province, Vietnam.

^{b.} Faculty of Engineering, Vietnamese-German University, Binh Duong, Vietnam.

Authors to whom correspondence should be addressed: phdtrung2018@gmail.com (Pham D. Trung), hien.td@vgu.edu.vn (Hien D. Tong)

Figure S1. The AIMD energy fluctuations and the snapshot of equilibrium structure of $Sn_2Se_2X_4$ (X = P, As) monolayer in liquid water after annealing at 300 K for 5 ps.

Figure S2. The calculated electronic band structure of the $Sn_2Se_2X_4$ (X = P, As) monolayers with spin-orbital coupling (SOC) (dash red curves), and without SOC (green) extracted from PBE functional.

Table S1. The calculated band gaps E_g^{HSE06} (eV) and the positions of the VBM and CBM of $\text{Sn}_2\text{Se}_2X_4$ (X = P, As) monolayers.

	$Sn_2Se_2As_4$			Sn ₂ Se ₂ P ₄		
Strains	$E_{\rm g}^{ m HSE06}$	VBM	CBM	$E_{\rm g}^{ m HSE06}$	VBM	CBM
-8%	1.405	-5.891	-4.486	1.231	-5.653	-4.422
-6%	1.538	-5.957	-4.420	1.358	-5.717	-4.358
-4%	1.655	-6.016	-4.361	1.468	-5.771	-4.303
-2%	1.758	-6.067	-4.310	1.556	-5.815	-4.259
0%	1.716	-6.046	-4.330	1.633	-5.854	-4.221
2%	1.659	-6.018	-4.359	1.701	-5.888	-4.187
4%	1.613	-5.995	-4.382	1.655	-5.865	-4.210
6%	1.574	-5.975	-4.402	1.604	-5.839	-4.235
8%	1.538	-5.957	-4.420	1.552	-5.813	-4.261