Theoretical study of the nitrogen reduction reaction catalyzed by B-doped MoO₂ six-membered ring

Shaona Chen,^{a,b} Demiao Fang,^b Zhangyu Zhou,^b Zhongxu Dai*^b and Jinjin Shi*^a

^a School of Transportation, Fujian University of technology, No3 Xueyuan Road, 350000 F uzhou City, Fujian, China. E-mail: shijinjinhit@sina.com.

^bCollege of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials China Three Gorges University, Yichang, Hube i 443002, China. E-mail: Daizx@ctgu.edu.cn.

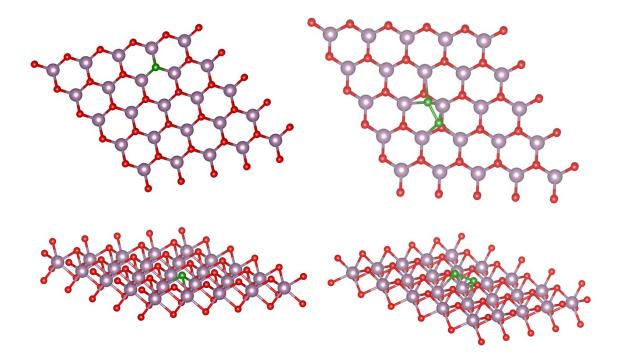


Figure S1. Double B monoatom doped MoO_2 configuration (B₂/MoO₂) (right) and B atom doped MoO_2 configuration (B/MoO₂) (left).

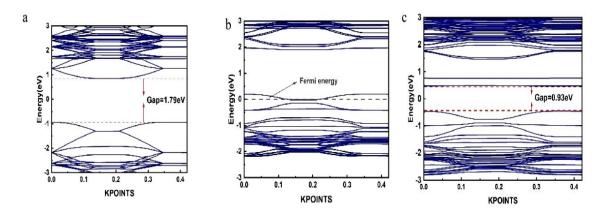


Figure S2. Energy band structure diagrams of a) MoO₂, b) B/MoO₂ and c) B₂/MoO₂.

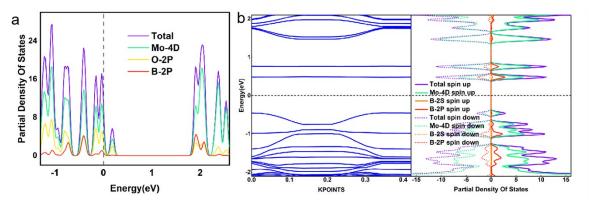
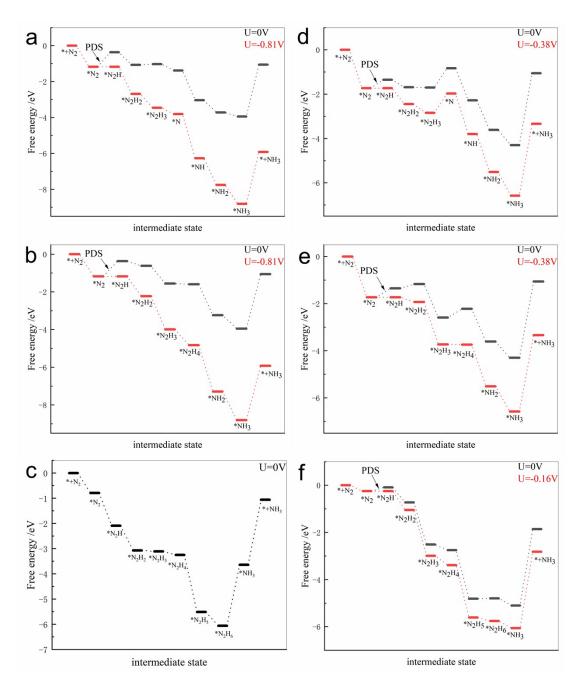



Figure S3. a) density of states plot of B/MoO₂; b) projected density of states plot of B₂/MoO₂.

Figure S4. Free energy for the formation of various intermediates during the reduction of N_2 to ammonia in the enzymatic (a), distal (b), and alternating (c) pathways on B_2/MoO_2 , and in the enzymatic (d), distal (e), and alternating (f) pathways on B/MoO_2 .

adsorption configurations	sub	B2	N_2
N_2 - B_2 (side)	-0.04 e	0.01 e	0.03 e
N ₂ -B ₂ (terminal)	0.16 e	0.09 e	-0.25 e
N ₂ -B (side)	0.10 e	0.08 e	-0.19 e
N ₂ -B (terminal)	0.12 e	0.11 e	-0.22 e

Table S1 bader charge analysis for different adsorption configurations