Supporting information for: Boron-Doped Graphene Topological Defects: Unveiling High Sensitivity to NO Gas Molecules for Gas Sensing Applications

B Keshav Rao^a, Tadeu Luiz Gomes Cabral^b, Debora Carvalho de Melo Rodrigues^c, Fábio A. L. de Souza^d, Wanderlã L. Scopel^e, Rodrigo G. Amorim^b, Ravindra Pandey^f

^aDepartment of Applied Physics, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India ^bUniversidade Federal Fluminense, R. Des. Ellis Hermydio Figueira, 783 -Aterrado, Volta Redonda, 27213-145, Brazil ^cDepartamento de Física, Universidade Federal Instituto de Física, Universidade Federal Fluminense, Av. Litorânea, sn, Niterói, 24210-340, RJ, Brazil ^dDepartamento de Física, Federal Institute of Education, Science and Technology of Espírito Santo, Ibatiba, 29395-000, ES, Brazil ^eDepartamento de Física, Universidade Federal do Espírito Santo, Vitória, 29075-910, ES, Brazil ^fDepartment of Physics, Michigan Technological University, Houghton, 49931, Michigan, USA

Keywords: B-doping line defect in graphene, Density Functional Theory, Green's Function, Simulated Scanning Tunneling Microscopy, Electron Transport, Gas Sensing.

Table S1: Dopant substitutional energies of B impurity in graphene with line defect unit cell. B-doped adsorption sites according to Figure 1. The most stable site is set as zero.

B-doped Sites	1	2	3	5
$\Delta E \ (eV)$	0.10	0.00	0.71	0.14

Figure S1: The calculated projected density of states for B-doped defective graphene. B atom occupies the most stable site (2), where C_1 , C_3 , and C_5 atoms are the first neighbors of it. The total dos normalized by the total number of atoms is also shown.

Figure S2: Zero bias transmission as a function of the energy for the B-doped line defect in graphene device with and without gas molecule a) CO and CO_2 gas; b) NO and NH_3 gas.