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Effects of Spin-Orbit Coupling

In order to investigate the impact of the heavy-atom effect on the calculated reaction path, spin-

orbit coupling (SOC) has been calculated as a correction to the ground state energy. These corrections, 

derived from single-point calculations using the ORCA 5.0.3 quantum chemistry program1, are presented 

in Table S1. For this purpose, an all-electron approach was necessary as opposed to the use of effective 

core potential to describe the core-electron of the heavy-atoms. 

In the calculation, the PBE0 hybrid functional2 and D3(BJ) dispersion correction3,4 were employed. 

The scalar relativistic effects were accounted for using the zeroth-order regular approximation5,6 (ZORA) 

and the relativistically recontracted ZORA-TZVP basis set7 was applied to hydrogen, boron and carbon 

atoms. The segmented all-electron relativistically contracted SARC-ZORA-TZVP basis set8,9 was applied 

to zirconium and hafnium centers. The structures were not re-optimized. Ten singlet and ten triplet excited 

states were calculated with linear-response time-dependent density functional theory10 (LR-TDDFT) 

using the closed-shell ground state as the reference state. The spin-orbit coupling operator was calculated 

by the SOMF-(1X)11 approach implemented in ORCA. The RIJCOSX algorithm was used throughout to 

accelerate the calculations. 

It was observed that the spin-orbit coupling was trivial to the reaction path. Despite some 

inconsistencies arising from the use of a different method and the fact that the geometries were not re-

optimized, it is reasonable to conclude that the inclusion of spin-orbit coupling does not significantly alter 

the favored reaction paths identified in the main text.

SOC correction cm-1 kcal⋅mol-1

CpHf-1a -7.7 -0.022

CpHf-1a-TS-2a -19.4 -0.055

CpHf-1b -45.6 -0.130

CpHf-2a -40.0 -0.114

CpHf-2a-TS-2f -69.7 -0.199

CpZr-1a -0.6 -0.002

CpZr-1a-TS-2a -1.2 -0.003

CpZr-1b -2.9 -0.008

CpZr-2a -2.6 -0.007

CpZr-2a-TS-2f -3.9 -0.011

SOC correction cm-1 kcal⋅mol-1

CpZr-2a-TS-3a -3.1 -0.009

CpZr-2f -1.0 -0.003

CpZr-3a -4.6 -0.013

Hf-1a -0.2 -0.001

Hf-1a-TS-2a -23.3 -0.067

Hf-1b -53.7 -0.153

Hf-2a -44.6 -0.127

Hf-2a-TS-2f -47.3 -0.135

Hf-2a-TS-3a -76.3 -0.218

Hf-2f -13.5 -0.039
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SOC correction cm-1 kcal⋅mol-1

Hf-3a -104.3 -0.298

Zr-1a 0.0 0.000

Zr-1a-TS-2a -1.7 -0.005

Zr-1b -3.4 -0.010

Zr-2a -2.8 -0.008

SOC correction cm-1 kcal⋅mol-1

Zr-2a-TS-2f -3.4 -0.010

Zr-2a-TS-3a -4.5 -0.013

Zr-2f -1.0 -0.003

Zr-3a -5.6 -0.016

Table S1. Spin orbit coupling corrections to the ground state energy of selected geometries.
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Figure S1: Reaction map of the tetrakis complex. M = Zr, Hf. 
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Figure S2: Reaction map of the cyclopentadienyl complex. M = Zr, Hf.
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Figure S3: Reaction coordinate diagram of the initial reactions of all Zr(BH4)4 pathways. All enthalpies were calculated at 298.15 K.
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Figure S4: Reaction coordinate diagram of the low energy pathway of Zr(BH4)4 reactions. All enthalpies were calculated at 298.15 K.
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Figure S5: Reaction coordinate diagram of the high energy pathway of Zr(BH4)4 reactions. All enthalpies were calculated at 298.15 K.
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Figure S6: Reaction coordinate diagram of the initial reactions of all CpHf(BH4)3 pathways. All enthalpies were calculated at 298.15 K.
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Figure S7:  Reaction coordinate diagram of the low energy pathway of CpHf(BH4)3 reactions. All enthalpies were calculated at 298.15 K.
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Figure S8: Reaction coordinate diagram of the high energy pathway of CpHf(BH4)3 reactions. All enthalpies were calculated at 298.15 K.
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Figure S9: Visualization of CpHf-2f structure - note gauche conformation of the B2H6 ligand.

Figure S10: Visualization of CpHf-2i structure. Note eclipsed conformation of B2H6 ligand.
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Figure S11: Reaction coordinate diagram of the initial reactions of all CpZr(BH4)3 pathways. All enthalpies were calculated at 298.15 K.
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Figure S12: Reaction coordinate diagram of the low energy pathway of CpZr(BH4)3 reactions. All enthalpies were calculated at 298.15 K.
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Figure S13: Reaction coordinate diagram of the high energy pathway of CpZr(BH4)3 reactions. All enthalpies were calculated at 298.15 K.
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