## **Supporting Information**

Finite temperature string by K-means clustering sampling with order parameter as collective variables for molecular crystal: application to polymorphic transformation between  $\beta$ -CL-20 and  $\epsilon$ -CL-20

Fu-de Ren,<sup>a</sup> Ying-zhe Liu,<sup>b</sup> Ke-wei Ding,<sup>b</sup> Ling-ling Chang,<sup>a</sup> Duan-lin Cao,<sup>a</sup>

and Shubin Liu<sup>c,d</sup>

<sup>a</sup> School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China <sup>b</sup> Xi'an Modern Chemistry Research Institute, Xi'an 710065, China

<sup>c</sup> Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA <sup>d</sup> Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA

- (1) Table S1 The structure, density, impact sensitivity, detonation velocity and detonation pressure of  $\epsilon$ -CL-20 and  $\beta$ -CL-20
- (2) Table S2 Average peak locations for the replicas by average-based sampling at 300 K
- (3) Table S3 Values of the partition coefficient (PC) and partition entropy (PE)
- (4) Fig. S1 Crystal structures of  $\beta$ -CL-20 and  $\varepsilon$ -CL-20
- (5) Fig. S2 The distribution of (a) distance, (b) bond orientation, (c) relative orientation OPs for CL-20 at 300.0 K.

**Table S1** The structure (Å), density ( $\rho$ , g/cm<sup>3</sup>), impact sensitivity ( $h_{50}$ , cm), detonation velocity (D, m/s) and detonation pressure (P, GPa) of  $\varepsilon$ -CL-20 and  $\beta$ -CL-20<sup>1,2</sup>

| Form    | Structure                                                                         | ρ     | $h_{50}$ | D    | Р    |
|---------|-----------------------------------------------------------------------------------|-------|----------|------|------|
| ε-CL-20 | P21/n, Monoclinic                                                                 | 2.044 | 26.8     | 9660 | 45.6 |
|         | $(a=8.852, b=12.556, c=13.386, \alpha=\gamma=90.0^{\circ}, \beta=106.82^{\circ})$ |       |          |      |      |
|         | V=1.4229 nm <sup>3 a</sup>                                                        |       |          |      |      |
| β-CL-20 | Pb2 <sub>1</sub> a, Orthorhombic                                                  | 1.985 | 24.2     | 9380 | 42.8 |
|         | $(a=9.676, b=13.006, c=11.649, \alpha=\beta=\gamma=90.0^{\circ})$                 |       |          |      |      |
|         | <i>V</i> =1.4358 nm <sup>3 a</sup>                                                |       |          |      |      |

<sup>a</sup> The experimental values were obtained from Ref. 80 (D. C. Sorescu, B. M. Rice and D. L. Thompson, J. Phys.

Chem. B, 1998, 102, 948–952)

|                               |       | 1#    |       |       | 2#    |       |       | 3#    |       |       | 4#    |       |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| <i>r</i> (Å)                  | 7.61  | 8.10  | 8.52  | 7.55  | 7.92  | 8.68  | 7.63  | 8.28  | 8.82  | 7.68  | 8.15  | 8.96  |
| $1/\sigma^2(\text{\AA}^{-1})$ | 10.23 | 21.56 | 28.62 | 55.18 | 22.65 | 16.18 | 19.50 | 17.51 | 28.22 | 27.13 | 24.02 | 31.68 |
|                               | 5#    |       |       | 6#    |       |       | 7#    |       |       | 8#    |       |       |
| <i>r</i> (Å)                  | 7.98  | 8.35  | 8.67  | 7.92  | 8.23  | 8.91  | 7.55  | 8.45  | 8.78  | 7.58  | 8.25  | 9.01  |
| $1/\sigma^2(\text{\AA}^{-1})$ | 22.13 | 17.51 | 29.08 | 35.63 | 38.52 | 29.13 | 19.06 | 59.51 | 31.82 | 36.08 | 12.67 | 22.72 |
|                               |       | 9#    |       |       | 10#   |       |       | 11#   |       |       | 12#   |       |
| <i>r</i> (Å)                  | 7.63  | 8.82  | 8.79  | 7.79  | 8.21  | 9.24  | 7.49  | 8.63  | 9.69  | 6.58  | 7.85  | 9.55  |
| $1/\sigma^2(\text{\AA}^{-1})$ | 26.18 | 31.02 | 18.63 | 18.23 | 28.62 | 19.37 | 21.63 | 43.55 | 18.92 | 22.63 | 41.18 | 24.01 |
|                               | 13#   |       |       | 14#   |       |       | 15#   |       |       | 16#   |       |       |
| <i>r</i> (Å)                  | 7.56  | 7.71  | 9.56  | 7.59  | 8.05  | 9.23  | 7.69  | 7.60  | 9.49  | 7.59  | 8.69  | 9.40  |
| $1/\sigma^2(\text{\AA}^{-1})$ | 42.17 | 18.53 | 20.03 | 50.67 | 22.93 | 17.62 | 13.89 | 43.02 | 20.33 | 46.05 | 21.82 | 20.43 |
| 17#                           |       |       | 18#   |       |       | 19#   |       |       | 20#   |       |       |       |
| <i>r</i> (Å)                  | 7.52  | 7.68  | 9.57  | 7.59  | 8.15  | 9.50  | 7.58  | 7.79  | 9.62  | 7.63  | 7.85  | 9.60  |
| $1/\sigma^2(\text{\AA}^{-1})$ | 62.17 | 25.03 | 20.22 | 18.02 | 55.17 | 15.86 | 21.97 | 28.50 | 31.29 | 33.18 | 22.67 | 29.85 |

**Table S2**Average peak locations for the replicas by average-based sampling at 300 K

|    | 1#   | 2#   | 3#   | 4#   | 5#   | 6#   | 7#   | 8#   | 9#   | 10#  |
|----|------|------|------|------|------|------|------|------|------|------|
| PC | 0.81 | 0.72 | 0.77 | 0.79 | 0.63 | 0.76 | 0.82 | 0.70 | 0.75 | 0.80 |
| PE | 0.39 | 0.45 | 0.42 | 0.38 | 0.53 | 0.39 | 0.41 | 0.43 | 0.36 | 0.52 |
|    | 11#  | 12#  | 13#  | 14#  | 15#  | 16#  | 17#  | 18#  | 19#  | 20#  |
| PC | 0.78 | 0.75 | 0.59 | 0.66 | 0.78 | 0.79 | 0.70 | 0.79 | 0.75 | 0.78 |
| PE | 0.41 | 0.45 | 0.62 | 0.33 | 0.40 | 0.39 | 0.51 | 0.38 | 0.45 | 0.45 |

**Table S3**Values of the partition coefficient (PC) and partition entropy (PE)



**Fig. S1** Crystal structures of  $\beta$ -CL-20 and  $\varepsilon$ -CL-20



**Fig. S2** The distribution of (a) distance, (b) bond orientation, (c) relative orientation OPs for CL-20 at 300.0 K.