Electronic Supplementary Information

for

A confinement-regulated $(H_3C-NH_3)^+$ ion as a smallest dual-wheel rotator showing bisected rotation dynamics

Wang Li,^{a,b} Miao Xie,^a Shi-Yong Zhang,^b Cheng-Hui Zeng,^{a,c} Zi-Yi Du^{a,*} and Chun-Ting He^a

^aCollege of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China. E-mail:

ziyidu@gmail.com

^bCollege of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China

^cSchool of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

Temperature (K)	150(2)	293(2)	
Empirical formula	$C_{13}H_{30}N_1O_6CI_3Cu_1$		
Formula weight	466.27		
Space group	<i>P</i> -1		
<i>a</i> (Å)	8.5399(4)	8.646(1)	
b (Å)	10.3775(3)	10.446(2)	
<i>c</i> (Å)	12.2132(6)	12.352(2)	
α (deg)	82.772(3)	82.605(2)	
<i>θ</i> (deg)	80.178(4)	79.325(2)	
γ (deg)	82.737(3)	82.289(2)	
Ζ	2		
D_{calcd} / g cm ⁻³	1.472	1.434	
μ / mm ⁻¹	1.444	1.407	
GOF on F ²	1.006	1.028	
$R_1, wR_2 [l > 2\sigma(l)]^a$	0.0659, 0.2148	0.0385, 0.1016	
R_1 , wR_2 (all data)	0.0726, 0.2176	0.0520, 0.1148	

Table S1 Summary of crystal data and structural refinements for 1 at 150 and 293 K

 ${}^{a}R_{1} = \sum ||F_{\rm o}| - |F_{\rm c}|| / \sum |F_{\rm o}|, \ wR_{2} = \{\sum w[(F_{\rm o})^{2} - (F_{\rm c})^{2}]^{2} / \sum w[(F_{\rm o})^{2}]^{2} \}^{1/2}$

153 K				
Cu1–Cl2	2.209(2)	Cu1–Cl1	2.212(2)	
Cu1–Cl3	2.302(2)	Cu1–Cl3#1	2.316(2)	
293 K				
Cu1–Cl2	2.1972(9)	Cu1–Cl1	2.2037(9)	
Cu1–Cl3	2.306(1)	Cu1–Cl3#1	2.323(1)	

Table S2 Selected bond lengths (Å) for 1 at 150 and 293 K

Symmetry code: #1. −*x* + 1, −*y*, −*z* + 2.

Table S3 The hydrogen-bond geometries (Å, °) for 2 at 150 and 293 K

	D–H…A	D–H	Н…А	D…A	Angle
150 K	N1–H1C…O5	0.900(6)	2.05(1)	2.921(1)	162.0(5)
	N1–H1D…O1	0.900(6)	1.874(1)	2.720(1)	155.8(5)
	N1–H1E…O3	0.900(6)	2.192(2)	3.018(2)	152.3(6)
293 K	N1–H1C…O5	0.907(2)	2.027(7)	2.901(7)	161.5(2)
	N1–H1D…O1	0.904(2)	1.959(8)	2.819(8)	158.6(3)
	N1–H1E…O3	0.906(2)	2.124(9)	2.965(9)	154.2(3)

Table S4 Fitting parameters of the Havriliak–Negami equation for 1 at a series of temperatures from 160 to 230 K

Т (К)	τ ₀ (s)	$arepsilon_0$	€∞	α	в
160	9.7×10 ⁻⁵	3.10	3.02	0.13	0.54
170	2.6×10 ⁻⁵	3.11	3.02	0.24	0.73
180	9.7×10 ⁻⁶	3.13	3.03	0.24	0.83
190	3.6×10 ⁻⁶	3.14	3.05	0.23	0.93
200	1.4×10 ⁻⁶	3.17	3.06	0.22	1.0
210	7.0×10 ⁻⁷	3.20	3.08	0.21	1.0
220	4.0×10 ⁻⁷	3.22	3.09	0.21	1.0
230	2.4×10 ⁻⁷	3.23	3.10	0.21	1.0

Fig. S1 Thermogravimetric curve for 1.

Fig. S2 Above: Views of the Hirshfeld surface (mapped with d_{norm}) of one $(CH_3NH_3)^+$ ion in **1** at 293 K, indicating the relative strength of the intermolecular interactions surrounding the $(CH_3NH_3)^+$ ion. The red, white, and blue regions represent molecular contacts shorter than, equal to, and longer than the van der Waals distance, respectively. Below: 2D fingerprint plots showing atomic contacts to the Hirshfeld surface of one $(CH_3NH_3)^+$ ion in **1** at 293 K, where d_i and d_e denote the distances from the surface to the nearest atom interior and exterior to the surface, respectively. The 2D plots were created by binning (d_e , d_i) pairs and coloring each bin of the resulting 2D histogram as a function of the fraction of surface points in that bin, ranging from blue (few points) through green to red (many points).

Fig. S3 Comparison of the conformations of the O1-containing 18-crown-6 molecule in **1** at 150 K (a) and 293 K (b), respectively, with slight change of their torsions.

Fig. S4 Arrhenius plots of the relaxation time τ as a function of inverse temperature for 1.

Fig. S5 Snapshots of NVT dynamic simulation for the $[(CH_3NH_3)(18\text{-crown-6})]^+$ complex in **1** at T_5 of 150 K (a-f), and the overlapping maps of these snapshots (g), to display their dynamics. The specified H and O atoms are highlighted by balls to guide the eye.

Fig. S6 Snapshots of NVT dynamic simulation for the $[(CH_3NH_3)(18\text{-crown-6})]^+$ complex in **1** at T_s of 330 K (a-f), and the overlapping maps of these snapshots (g), to display their dynamics. The specified H and O atoms are highlighted by balls to guide the eye.

Fig. S7 Simulated and experimental PXRD patterns for 1 at room temperature.