Supporting Information

High-temperature Superconductivities and Crucial Factors

Influencing Stability of LaThH₁₂ under Moderate Pressures

Pengye Liu¹, Wendi Zhao¹, Zhao Liu^{*1}, Yilong Pan¹, Defang Duan² and Tian Cui^{*1,2}

¹Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China

²State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China

Contents

Supplementary FiguresS3
Fig. S1. The calculated enthalpies as a function of pressure for predicted $LaThH_{12}$ relative
to the <i>Pm</i> -3 <i>m</i> phaseS3
Fig. S2. The phonon dispersion curve for Fd -3 m -LaThH ₁₂ S3
Fig. S3. The calculated iCOHP of H–H bonds of <i>R</i> -3 <i>c</i> -LaThH ₁₂ at 30 and 100 GPaS3
Fig. S4. Calculated the 2D ELF of 1D profile locating at the H-H distance of 0.9 Å and
1.63 Å in the <i>R</i> -3 <i>c</i> -LaThH ₁₂ structure at 30 GPaS4
Fig. S5. (a) Partial density of states projected onto hydrogen atoms for R -3 c -LaThH ₁₂ at 30
GPa, Pm -3 m -LaThH ₁₂ at 140 GPa and $Cmmm$ -LaThH ₁₂ at 240 GPa. (b) COHP and ICOHP
of the pair of H-H bond in R-3c-LaThH ₁₂ at 30 GPaS4
Fig. S6. Integrated PDOS of H p orbitals of LaThH ₁₂ at pressures up to 240 GPaS5
Fig. S7. The calculated electron-phonon coupling λ with different double-delta smearing
values for <i>R</i> -3 <i>c</i> -LaThH ₁₂ at 30 GPaS5
Supplementary structural information of our predicted other hydrides
Fig. S8. Trigonal formation enthalpies convex hull of La-Th-H system at 30 GPa, 50 GPa, 100
GPa, 200 GPa, and 300 GPa, respectively
Fig. S9. The phonon dispersion curve, projected phonon density of states (PHDOS),
Eliashberg spectral function $\alpha^2 F(\omega)$, together with the electron-phonon parameter $\lambda(\omega)$ for
different structure
Fig. S10. The predicted crystal structures of different structures
Supplementary Table
Table S1. Superconducting transition temperatures of stable structures at different pressure.
Table S2. Structural information of predicted metastable hydrides in this work
Table S3. The average charge value (e) and number of electrons transferred $\delta(e)$ for
different atoms in <i>R</i> -3 <i>c</i> -LaThH ₁₂ and <i>R</i> -3 <i>c</i> -LaYH ₁₂ at 50 GPaS10
Table S4. Structural information of predicted stable hydrides in this work S10

R	eferen	ces					••••••		•••••		S13
	hydrid	es			•••••					•••••	S12
	Table	S5 .	Summary	of	the	main	superconducting	properties	of	other	metastable

Fig. S1. (a) The calculated enthalpies as a function of pressure for predicted LaThH₁₂ relative to the *Pm-3m* phase. (b) Enthalpies of *R-3c*, *Fd-3m* and *Cmmm* structures relative to the *Pm-3m* structure.

Fig. S2. The phonon dispersion curve for Fd-3m-LaThH₁₂ at 225GPa.

Fig. S3. The calculated iCOHP of H–H bonds of *R*-3*c*-LaThH₁₂ at 30 and 100 GPa.

Fig. S4. Calculated the 2D ELF of 1D profile locating at the H-H distance of 0.9 Å and 1.63 Å in the R-3c-LaThH₁₂ structure at 30 GPa.

Fig. S5. (a) Partial density of states (DOS) projected onto hydrogen atoms for R-3c-

LaThH₁₂ at 30 GPa, Pm-3m-LaThH₁₂ at 140 GPa and Cmmm-LaThH₁₂ at 240 GPa, where all the electron states originated from H p_x , p_y , and p_z orbitals near the Fermi level contribute to the DOS. (b) COHP (blue line) and ICOHP (red line) of the pair of H-H bond in R-3c-LaThH₁₂ at 30 GPa.

Fig. S6. Integrated PDOS of H p orbitals of LaThH₁₂ at pressures up to 240 GPa. The calculated integrated projected DOS clearly shows a gradual increase and widening of the H p-valence band of LaThH₁₂ with increasing pressure. The number of p electrons has more than doubled (from 0.34e/state to 0.8e/state) as the pressure is increased from 30 to 240 GPa.

Fig. S7. The calculated electron-phonon coupling λ with different double-delta smearing values for *R*-3*c*-LaThH₁₂ at 30 GPa, the value of λ becomes convergent more perfectly at the smearing width value of 0.03.

Supplementary structural information of our predicted other hydrides in La-Th-H system:

In order to facilitate a more detailed understanding of the La-Th-H system, we have provided a supplementary description of the predicted new structures of the system. As shown in Fig. S8, we successfully reproduced the previously predicted structures such as Pm3-LaThH₆, P-1-La₃ThH₁₆, P2/m-LaTh₃H₁₆, Cmmm-LaThH₈, C2/m-La₂ThH₁₂, C2/m-LaTh₂H₁₂, I4/mmm-LaTh₃H₄₀ and R-3m-LaThH₂₀, confirming the reliability of our work, their corresponding T_c 's and atomic coordinates are summarized in Table S1 and Table S4¹. Our predicted clathrate hydrides, such as P-3m1-LaTh₂H₁₈, Fm-3m-LaTh₃H₂₄, and C2/m-La₂ThH₁₈, were found to be dynamically stable within the range of 50 - 300 GPa, with formation energies slightly higher than the convex hull diagram by 20 - 50 meV/atom. LaTh₂H₁₈ and La₂ThH₁₈ maintain dynamic stability at 200 GPa, while LaTh₃H₂₄ can be stabilized at 150 GPa (see Fig. S9). Furthermore, the metastable hydrides LaTh₂H₁₈, La₂ThH₁₈, and LaTh₃H₂₄ can also be viewed as stacked configurations of La-H₂₄ cages and Th-H₂₄ cages, and their corresponding geometries have been listed in Fig. S10. The lattice parameters and superconductivities of corresponding structures of P-3m1-LaTh₂H₁₈, Fm-3m-LaTh₃H₂₄, and C2/m-La₂ThH₁₈ are summarized in Table S2 and Table S5.

Fig. S8. Trigonal formation enthalpies convex hull of La-Th-H system at 30 GPa, 50 GPa, 100 GPa, 200 GPa, and 300 GPa, respectively. Orange circles denoted thermodynamically stable stoichiometries. Green circles denoted thermodynamically unstable stoichiometries. Differently colored squares denoted metastable stoichiometries. The range of distance from the convex hull was given in the legend.

Fig. S9. The phonon dispersion curve, projected phonon density of states (PHDOS), Eliashberg spectral function $\alpha^2 F(\omega)$, together with the electron-phonon parameter $\lambda(\omega)$ for (a) *C*2/*m*-La₂ThH₁₈ at 200 GPa, (b) *P*-3*m*1-LaTh₂H₁₈ at 200 GPa, (c) *Fm*-3*m*-LaTh₃H₂₄ at 150 GPa.

Fig. S10. The predicted crystal structure of (a) C2/m-La₂ThH₁₈, (b) P-3m1-LaTh₂H₁₈ and (c) Fm-3m-LaTh₃H₂₄, consisting of Th-centered H₂₄ cages (light blue) and Lacentered H₂₄ cages (light orange).

Phase	Space group	P (GPa)	T _c (K)
LaThH ₆	Pm3	50	0.009
LaThH ₈ ¹	Cmmm	100	10.1
La ₃ ThH ₁₆ ¹	<i>P</i> -1	100	34.7
$LaTh_2H_{12}$ ¹	C2/m	200	1.0
La ₂ ThH ₁₂ ¹	C2/m	200	10.7
LaTh ₃ H ₄₀ ¹	I4/mmm	200	163.8
LaThH ₂₀ ¹	<i>R</i> -3 <i>m</i>	200	179.2

 Table S1. Superconducting transition temperatures of stable structures at different pressure.

Table S2. Structural information of predicted metastable hydrides in this work.

Space group	P (GPa)	Lattice parameters	Atomic coordinates (fractional) Atoms x y z
<i>R</i> -3 <i>c</i> -LaThH ₁₂	30	$a = 5.95772b = 5.95772c = 15.2468\alpha = 90.0°\beta = 90.0°\gamma = 120.0°$	H(36f)0.580250.677310.79949H(36f)0.615710.677290.55951La(6b)0.333330.666670.16667Th(6a)0.333330.666670.91667
<i>Fm</i> -3 <i>m</i> -LaTh ₃ H ₂₄	100	a = 7.3709 b = 7.3709 c = 7.3709 $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$	H(96j)-0.000000.875660.75054La(4a)0.50000-0.000000.50000Th(8c)0.750000.750000.75000Th(4b)0.000000.000000.50000
$P-3m1-LaTh_2H_{18}$	100	a = 5.1994 b = 5.1994 c = 3.1926 $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 120.0^{\circ}$	H(12j)0.669260.584740.83098H(6h)0.000000.750430.50000La(1a)0.000000.000000.00000Th(2d)0.666670.3333330.33012
<i>Pm</i> -3 <i>m</i> -LaThH ₁₂	200	a = 3.8020 b = 3.8020 c = 3.8020 $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$	H(12h)0.500000.751130.00000La(1a)0.000000.000000.00000Th(1b)0.500000.500000.50000
Cmmm-LaThH ₁₂	300	a = 3.5888 b = 4.7125 c = 5.5053 $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$	La(2c) 0.5000 -0.0000 -0.5000 Th(2a) 0.00000 0.00000 0.00000 H(8n) 0.5000 0.38785 -0.36094 H(8n) 0.5000 0.1139 -0.14285 H(8m) 0.2500 -0.2500 -0.25295

C2/m-La ₂ ThH ₁₈	300	a = 9.1758	H(8j)	0.62067	0.11388	0.01893
- 10		b = 4.8356	H(8j)	0.83244	0.25179	0.66413
		c = 3.3156	H(8j)	0.71297	0.11248	0.64787
		$\alpha = 90.0^{\circ}$	H(8j)	0.95409	0.11084	0.68297
		$\beta = 93.5924^{\circ}$	H(4g)	0.00000	0.74751	0.00000
		$\gamma = 90.0^{\circ}$	La(4i)	0.666667	0.50000	0.83642
			Th(2d)	0.00000	0.50000	0.50000

Table S3. The average charge value (e) and number of electrons transferred $\delta(e)$ for different atoms in *R*-3*c*-LaThH₁₂ and *R*-3*c*-LaYH₁₂ at 50 GPa.

Structure	Atom	Pressure	Charge Value	$\delta(e)$
	La (2)		9.54	1.46
	Th (2)		10.16	1.84
R-3 c -LaThH ₁₂	H1 (12)	50GPa	1.41	-0.41
	H2 (6)		1.13	-0.13
	H3 (6)		1.15	-0.15
	La (2)		9.26	1.74
	Y (2)		9.14	1.86
R-3 c -LaYH ₁₂	H1 (12)	50GPa	1.52	-0.52
	H2 (6)		1.09	-0.09
	H3 (6)		1.07	-0.07

Table S4. Structural information of our pr	edicted another stable h	ydrides in this wo	ərk.
--	--------------------------	--------------------	------

Space group	P (GPa)	Lattice parameters	Atomic coordinates (fractional)
			Atoms x y z
Pm3-LaThH ₆	30	a = 4.0752 b = 4.0752 c = 4.0752 $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$	H(6g) 0.50000 0.00000 0.238510 La(1b) 0.50000 0.50000 0.50000 Th(1a) 0.00000 0.00000 0.00000
P4/nmm- LaThH	50	a = 3.22219 b = 3.22219 c = 8.86673 α = 90.0° β = 90.0° γ = 90.0°	H(8j)0.500000.000000.62949La(8j)0.500001.000000.36625Th(8j)0.500001.00000-0.11626
Pm3-LaThH ₆	50	a = 3.9545 b = 3.9545 c = 3.9545 $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$	H(6f) 1.23866 -1.00000 -0.50000 La(1b) 0.50000 -0.50000 -0.50000 Th(1a) -0.00000 -1.00000 -1.00000

<i>Pm-3n-</i> LaTh ₃ H ₁₆	50	a = 6.3358 b = 6.3358 c = 6.3358 $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$	H(24k) H(8e) La(2a) Th(6c)	1.000000.15804 0.678380.250000.25000 0.250000.000000.00000 0.000000.500000.75000 0.00000
<i>Cmmm</i> - LaThH ₈	100	a = 4.2311 b = 5.9785 c = 4.2353 α = 90.0° β = 90.0° γ = 90.0°	H(8m) H(4j) H(4i) La(2c) Th(2a)	0.250000.250000.23415-0.000000.136640.50000-0.000000.364480.000000.000000.500000.500000.000000.000000.00000
P-1- La ₃ ThH ₁₆	100	$a = 3.6724b = 5.6233c = 5.6129\alpha = 73.2990°\beta = 77.4613°\gamma = 90.0846°$	H(2i) H(2i) H(2i) H(2i) H(2i) H(2i) H(2i) H(2i) La(2i) La(1g) Th(1e)	0.043290.330030.917700.058140.620620.822090.186140.872920.440130.205470.193780.326480.298750.810250.151450.310660.134460.059500.430910.377640.696090.445640.675770.605170.250960.001940.748040.000000.500000.50000
C2/m- La ₂ ThH ₁₂	200	a = 9.7457 b = 3.9161 c = 3.4991 $\alpha = 90.0^{\circ}$ $\beta = 92.8528^{\circ}$ $\gamma = 90.0^{\circ}$	H(8j) H(4i) H(4i) H(4i) La(4i) H(4g) Th(2d)	0.66296-0.242230.329120.04695-0.000000.301950.61135-0.000000.027700.71022-0.000000.642080.16727-0.000000.829510.50000-0.238040.000000.500000.000000.50000
C2/m- LaTh ₂ H ₁₂	200	$a = 9.7356b = 3.8833c = 3.4958\alpha = 90.0^{\circ}\beta = 92.6646^{\circ}\gamma = 90.0^{\circ}$	H(8j) H(4i) H(4i) H(4i) H(4i) H(4i) H(4h) La(2a)	0.66973-0.246720.837600.54933-0.000000.811840.12239-0.000000.526240.21642-0.000000.140560.6666667-0.000000.338140.50000-0.240520.500000.000000.000000.00000
<i>R-3m-</i> LaThH ₂₀	200	$a = 3.5289b = 3.5289c = 17.4089\alpha = 90.0°\beta = 90.0°\gamma = 120.0°$	H(18h) H(18h) H(6c) H(6c) H(6c) H(6c) La(3b) Th(3a)	-0.32598 -0.16299 0.76785 0.34490 0.17245 0.60553 -0.00000 0.00000 0.12130 -0.00000 0.00000 0.18958 -0.00000 0.00000 0.31076 -0.00000 0.00000 0.37382 -0.00000 -0.00000 0.50000 0.00000 0.00000 0.50000
<i>I4/mmm-</i> LaTh ₃ H ₄₀	200	$a = 4.9929b = 4.9929c = 9.9937\alpha = 90.0°\beta = 90.0°\gamma = 90.0°$	H(32o) H(16m) H(16m) H(16m) La(2b) Th(2a) Th(2a)	-0.38155 0.12287 0.43785 -0.12259 0.12259 0.81194 -0.12410 0.12410 0.69165 -0.24954 0.24954 0.62456 -0.00000 -0.00000 0.50000 0.00000 0.00000 0.25000
P2/m-		a = 3.4919 b = 3.8823 c = 6.5240	H(4o) H(2i) H(2m) H(2m) H(2n)	0.252690.256760.744140.000000.259410.000000.036110.000000.184710.465840.000000.326960.216810.500000.56942

LaTh ₃ H ₁₆	200	$\alpha = 90.0^{\circ}$	H(2n)	0.28661	0.50000 0.92673
5 10		$\beta = 97.2805^{\circ}$	Th(2n)	0.24338	0.50000 0.24860
		$\gamma = 90.0^{\circ}$	H(21)	0.50000	0.25829 0.50000
			La(1d)	0.50000	0.00000 -0.00000
			Th(1c)	0.00000	0.00000 0.50000

Table S5. Summary of the main superconducting properties of other metastable hydrides. λ , ω_{\log} and T_c expressed in Kelvin (K) in the table. The DOS at $E_f N(E_F)$ is in units of (states/spin/Ry/cell).

	P(GPa)	λ	ω_{log}	$N(E_F)$	$T_{\rm c}(\mu^*=0.1)$
C2/m-La ₂ ThH ₁₈	200	1.96	646.55	16.33	112.85
$P-3m1-LaTh_2H_{18}$	200	1.63	712.09	16.22	102.50
Fm-3m-LaTh ₃ H ₂₄	150	1.50	965.05	22.62	125.29
Fm-3m-LaTh ₃ H ₂₄	200	1.55	756.81	22.30	103.04

References

1. P. Song, Z. Hou, K. Hongo and R. Maezono, arXiv:2210.06371, 2022.