Supplementary Information

Quantum rotational dynamics of $I-C_4$ ($^{3}\Sigma^{-}_{g}$) by H₂ at low temperatures employing machine learning augmented potential energy surface

Pooja Chahal, Apoorv Kushwaha and T.J. Dhilip Kumar Quantum Dynamics Lab, Department of Chemistry Indian Institute of Technology Ropar, Rupnagar 140001, India

Table of Contents

Table S1: Data of rate coefficients of excitation transitions for the comparison of para H_2 and ortho H_2 as a function of temperature
Table S2: Data of rate coefficients of de-excitation transitions for the comparison of para H_2 and H_2 as a function of temperature.S5
Table S3: Python program for generating PES. S7
Table S4: Ab initio energies (C_4 - H_2) at various geometries compared to recreated PES (from radial terms).S8
Table S5: Computed properties of C_4 compared to previous literature.S8
Figure S1: Cross-sections for the rotational excitation transitions (1-N) of collision of C_4 with ortho H_2 till energy range of 300 cm ⁻¹
Figure S2: Comparison between the cross-sections ($\Delta j = 2$) computed for C_4 molecule due to its collision with para and ortho H_2 for different transitions
Figure S3: Cross-sections for the rotational excitation transitions ($\Delta j = 2$) of collision of C_4 with ortho H_2 till energy range of 300 cm ⁻¹
Figure S4: Cross-sections for the rotational excitation transitions (1-N) of collision of C_4 with para H_2 till energy range of 300 cm ⁻¹
<i>Figure S5: PES at various angular coordinates</i> (ϕ , θ_2 , θ_1 , R) <i>with respect to RS11</i>
Figure S6: Variation of R (optimised) with respect to θ_2 vs θ_1 at $\phi = 0^{\circ}$

			para -H2			ortho -H2		
T (K)	1-3	1-5	1-7	1-9	1-3	1-5	1-7	1-9
1	9.31E-12	5.42E-14	4.76E-17	6.67E-21	1.03E-11	7.23E-14	7.89E-17	8.8E-21
2	4.15E-11	2.39E-12	5.87E-14	6.29E-16	4.34E-11	3.22E-12	8.68E-14	7.19E-16
3	6.57E-11	8.55E-12	6.51E-13	2.89E-14	6.93E-11	1.12E-11	9.02E-13	3.24E-14
4	8.07E-11	1.61E-11	2.2E-12	1.98E-13	8.67E-11	2.07E-11	2.91E-12	2.22E-13
5	9E-11	2.36E-11	4.58E-12	6.36E-13	9.87E-11	2.97E-11	5.88E-12	7.14E-13
6	9.61E-11	3.04E-11	7.5E-12	1.39E-12	1.07E-10	3.77E-11	9.41E-12	1.57E-12
7	1E-10	3.63E-11	1.07E-11	2.44E-12	1.13E-10	4.45E-11	1.32E-11	2.76E-12
8	1.03E-10	4.16E-11	1.39E-11	3.74E-12	1.17E-10	5.03E-11	1.7E-11	4.22E-12
9	1.05E-10	4.61E-11	1.71E-11	5.21E-12	1.21E-10	5.53E-11	2.07E-11	5.89E-12
10	1.06E-10	5.01E-11	2.02E-11	6.8E-12	1.23E-10	5.96E-11	2.42E-11	7.7E-12
11	1.07E-10	5.36E-11	2.32E-11	8.46E-12	1.25E-10	6.32E-11	2.75E-11	9.57E-12
12	1.07E-10	5.67E-11	2.59E-11	1.01E-11	1.26E-10	6.63E-11	3.06E-11	1.15E-11
13	1.07E-10	5.94E-11	2.85E-11	1.18E-11	1.27E-10	6.9E-11	3.35E-11	1.33E-11
14	1.07E-10	6.18E-11	3.09E-11	1.34E-11	1.27E-10	7.13E-11	3.61E-11	1.52E-11
15	1.07E-10	6.38E-11	3.3E-11	1.5E-11	1.27E-10	7.32E-11	3.85E-11	1.69E-11
16	1.07E-10	6.56E-11	3.5E-11	1.65E-11	1.28E-10	7.48E-11	4.07E-11	1.86E-11
17	1.07E-10	6.72E-11	3.68E-11	1.8E-11	1.27E-10	7.62E-11	4.26E-11	2.02E-11
18	1.06E-10	6.85E-11	3.84E-11	1.93E-11	1.27E-10	7.73E-11	4.44E-11	2.16E-11
19	1.06E-10	6.96E-11	3.98E-11	2.05E-11	1.26E-10	7.82E-11	4.59E-11	2.3E-11
20	1.05E-10	7.05E-11	4.11E-11	2.17E-11	1.26E-10	7.89E-11	4.73E-11	2.43E-11
21	1.04E-10	7.13E-11	4.23E-11	2.28E-11	1.25E-10	7.95E-11	4.85E-11	2.54E-11
22	1.04E-10	7.19E-11	4.33E-11	2.38E-11	1.24E-10	7.99E-11	4.96E-11	2.65E-11
23	1.03E-10	7.23E-11	4.42E-11	2.47E-11	1.23E-10	8.02E-11	5.05E-11	2.74E-11
24	1.02E-10	7.27E-11	4.5E-11	2.55E-11	1.22E-10	8.03E-11	5.12E-11	2.83E-11
25	1.01E-10	7.29E-11	4.56E-11	2.62E-11	1.21E-10	8.03E-11	5.19E-11	2.9E-11
26	1E-10	7.31E-11	4.62E-11	2.69E-11	1.2E-10	8.03E-11	5.25E-11	2.97E-11
27	9.92E-11	7.31E-11	4.67E-11	2.75E-11	1.19E-10	8.01E-11	5.29E-11	3.03E-11
28	9.82E-11	7.31E-11	4.71E-11	2.81E-11	1.18E-10	7.99E-11	5.33E-11	3.09E-11
29	9.72E-11	7.3E-11	4.74E-11	2.86E-11	1.17E-10	7.96E-11	5.35E-11	3.14E-11
30	9.62E-11	7.28E-11	4.77E-11	2.9E-11	1.15E-10	7.93E-11	5.37E-11	3.18E-11
31	9.52E-11	7.26E-11	4.79E-11	2.94E-11	1.14E-10	7.89E-11	5.39E-11	3.21E-11
32	9.42E-11	7.24E-11	4.8E-11	2.97E-11	1.13E-10	7.84E-11	5.39E-11	3.24E-11
33	9.32E-11	7.21E-11	4.81E-11	3E-11	1.12E-10	7.79E-11	5.39E-11	3.27E-11
34	9.22E-11	7.17E-11	4.82E-11	3.03E-11	1.1E-10	7.74E-11	5.39E-11	3.29E-11
35	9.11E-11	7.13E-11	4.82E-11	3.05E-11	1.09E-10	7.68E-11	5.38E-11	3.31E-11
36	9.01E-11	7.09E-11	4.82E-11	3.07E-11	1.08E-10	7.62E-11	5.37E-11	3.32E-11
37	8.91E-11	7.05E-11	4.81E-11	3.08E-11	1.07E-10	7.56E-11	5.35E-11	3.33E-11
38	8.81E-11	7E-11	4.8E-11	3.09E-11	1.05E-10	7.5E-11	5.33E-11	3.34E-11
39	8.71E-11	6.95E-11	4.79E-11	3.1E-11	1.04E-10	7.44E-11	5.31E-11	3.34E-11
40	8.61E-11	6.91E-11	4.78E-11	3.11E-11	1.03E-10	7.37E-11	5.28E-11	3.34E-11
41	8.51E-11	6.85E-11	4.76E-11	3.12E-11	1.01E-10	7.3E-11	5.26E-11	3.34E-11

<u>Table S1</u>: Data of rate coefficients of excitation transitions for the comparison of *para* H_2 and *ortho* H_2 as a function of temperature.

42	8.41E-11	6.8E-11	4.74E-11	3.12E-11	1E-10	7.23E-11	5.23E-11	3.33E-11
43	8.31E-11	6.75E-11	4.72E-11	3.12E-11	9.89E-11	7.17E-11	5.2E-11	3.33E-11
44	8.22E-11	6.7E-11	4.7E-11	3.12E-11	9.77E-11	7.1E-11	5.16E-11	3.32E-11
45	8.12E-11	6.64E-11	4.68E-11	3.12E-11	9.65E-11	7.03E-11	5.13E-11	3.31E-11
46	8.03E-11	6.59E-11	4.66E-11	3.12E-11	9.53E-11	6.96E-11	5.09E-11	3.3E-11
47	7.94E-11	6.53E-11	4.63E-11	3.11E-11	9.41E-11	6.89E-11	5.06E-11	3.29E-11
48	7.85E-11	6.48E-11	4.61E-11	3.11E-11	9.29E-11	6.82E-11	5.02E-11	3.27E-11
49	7.76E-11	6.42E-11	4.58E-11	3.1E-11	9.17E-11	6.75E-11	4.98E-11	3.26E-11
50	7.67E-11	6.36E-11	4.55E-11	3.09E-11	9.06E-11	6.68E-11	4.94E-11	3.24E-11
51	7.58E-11	6.31E-11	4.52E-11	3.09E-11	8.95E-11	6.61E-11	4.9E-11	3.23E-11
52	7.5E-11	6.25E-11	4.49E-11	3.08E-11	8.83E-11	6.54E-11	4.86E-11	3.21E-11
53	7.41E-11	6.2E-11	4.47E-11	3.07E-11	8.73E-11	6.47E-11	4.82E-11	3.19E-11
54	7.33E-11	6.14E-11	4.44E-11	3.06E-11	8.62E-11	6.4E-11	4.78E-11	3.17E-11
55	7.25E-11	6.09E-11	4.41E-11	3.04E-11	8.51E-11	6.34E-11	4.74E-11	3.15E-11
56	7.17E-11	6.03E-11	4.38E-11	3.03E-11	8.41E-11	6.27E-11	4.7E-11	3.13E-11
57	7.09E-11	5.98E-11	4.35E-11	3.02E-11	8.3E-11	6.2E-11	4.66E-11	3.11E-11
58	7.01E-11	5.93E-11	4.32E-11	3.01E-11	8.2E-11	6.14E-11	4.61E-11	3.09E-11
59	6.93E-11	5.87E-11	4.29E-11	2.99E-11	8.1E-11	6.07E-11	4.57E-11	3.07E-11
60	6.86E-11	5.82E-11	4.26E-11	2.98E-11	8E-11	6.01E-11	4.53E-11	3.05E-11
61	6.78E-11	5.77E-11	4.23E-11	2.97E-11	7.91E-11	5.94E-11	4.49E-11	3.03E-11
62	6.71E-11	5.72E-11	4.2E-11	2.95E-11	7.81E-11	5.88E-11	4.45E-11	3.01E-11
63	6.64E-11	5.67E-11	4.16E-11	2.94E-11	7.72E-11	5.82E-11	4.41E-11	2.98E-11
64	6.57E-11	5.62E-11	4.13E-11	2.92E-11	7.63E-11	5.76E-11	4.37E-11	2.96E-11
65	6.5E-11	5.57E-11	4.1E-11	2.91E-11	7.54E-11	5.69E-11	4.33E-11	2.94E-11
66	6.43E-11	5.52E-11	4.07E-11	2.9E-11	7.45E-11	5.63E-11	4.29E-11	2.92E-11
67	6.36E-11	5.47E-11	4.04E-11	2.88E-11	7.36E-11	5.57E-11	4.25E-11	2.9E-11
68	6.3E-11	5.42E-11	4.01E-11	2.87E-11	7.28E-11	5.52E-11	4.21E-11	2.87E-11
69	6.23E-11	5.37E-11	3.99E-11	2.85E-11	7.19E-11	5.46E-11	4.17E-11	2.85E-11
70	6.17E-11	5.32E-11	3.96E-11	2.84E-11	7.11E-11	5.4E-11	4.13E-11	2.83E-11
71	6.11E-11	5.28E-11	3.93E-11	2.82E-11	7.03E-11	5.34E-11	4.09E-11	2.81E-11
72	6.04E-11	5.23E-11	3.9E-11	2.81E-11	6.95E-11	5.29E-11	4.05E-11	2.78E-11
73	5.98E-11	5.19E-11	3.87E-11	2.79E-11	6.87E-11	5.23E-11	4.02E-11	2.76E-11
74	5.92E-11	5.14E-11	3.84E-11	2.77E-11	6.79E-11	5.18E-11	3.98E-11	2.74E-11
75	5.87E-11	5.1E-11	3.81E-11	2.76E-11	6.71E-11	5.13E-11	3.94E-11	2.72E-11
76	5.81E-11	5.05E-11	3.78E-11	2.74E-11	6.64E-11	5.07E-11	3.9E-11	2.7E-11
77	5.75E-11	5.01E-11	3.76E-11	2.73E-11	6.57E-11	5.02E-11	3.87E-11	2.67E-11
78	5.7E-11	4.97E-11	3.73E-11	2.71E-11	6.49E-11	4.97E-11	3.83E-11	2.65E-11
79	5.64E-11	4.93E-11	3.7E-11	2.7E-11	6.42E-11	4.92E-11	3.8E-11	2.63E-11
80	5.59E-11	4.88E-11	3.67E-11	2.68E-11	6.35E-11	4.87E-11	3.76E-11	2.61E-11
81	5.53E-11	4.84E-11	3.65E-11	2.67E-11	6.28E-11	4.82E-11	3.73E-11	2.59E-11
82	5.48E-11	4.8E-11	3.62E-11	2.65E-11	6.22E-11	4.77E-11	3.69E-11	2.57E-11
83	5.43E-11	4.76E-11	3.59E-11	2.64E-11	6.15E-11	4.73E-11	3.66E-11	2.55E-11
84	5.38E-11	4.72E-11	3.57E-11	2.62E-11	6.08E-11	4.68E-11	3.63E-11	2.53E-11
85	5.33E-11	4.68E-11	3.54E-11	2.61E-11	6.02E-11	4.63E-11	3.59E-11	2.51E-11
86	5.28E-11	4.65E-11	3.52E-11	2.59E-11	5.96E-11	4.59E-11	3.56E-11	2.49E-11
87	5.23E-11	4.61E-11	3.49E-11	2.58E-11	5.89E-11	4.54E-11	3.53E-11	2.47E-11
88	5.19E-11	4.57E-11	3.47E-11	2.56E-11	5.83E-11	4.5E-11	3.5E-11	2.45E-11

89	5.14E-11	4.53E-11	3.44E-11	2.55E-11	5.77E-11	4.46E-11	3.46E-11	2.43E-11
90	5.09E-11	4.5E-11	3.42E-11	2.53E-11	5.71E-11	4.41E-11	3.43E-11	2.41E-11
91	5.05E-11	4.46E-11	3.39E-11	2.52E-11	5.65E-11	4.37E-11	3.4E-11	2.39E-11
92	5E-11	4.43E-11	3.37E-11	2.51E-11	5.6E-11	4.33E-11	3.37E-11	2.37E-11
93	4.96E-11	4.39E-11	3.35E-11	2.49E-11	5.54E-11	4.29E-11	3.34E-11	2.35E-11
94	4.92E-11	4.36E-11	3.32E-11	2.48E-11	5.48E-11	4.25E-11	3.31E-11	2.33E-11
95	4.87E-11	4.32E-11	3.3E-11	2.46E-11	5.43E-11	4.21E-11	3.28E-11	2.31E-11
96	4.83E-11	4.29E-11	3.28E-11	2.45E-11	5.37E-11	4.17E-11	3.25E-11	2.29E-11
97	4.79E-11	4.26E-11	3.25E-11	2.43E-11	5.32E-11	4.13E-11	3.23E-11	2.27E-11
98	4.75E-11	4.22E-11	3.23E-11	2.42E-11	5.27E-11	4.09E-11	3.2E-11	2.26E-11
99	4.71E-11	4.19E-11	3.21E-11	2.41E-11	5.22E-11	4.05E-11	3.17E-11	2.24E-11
100	4.67E-11	4.16E-11	3.19E-11	2.39E-11	5.17E-11	4.02E-11	3.14E-11	2.22E-11

<u>Table S2</u>: Data of rate coefficients of de-excitation transitions for the comparison of *para* H_2 and He as a function of temperature.

			para -H ₂				He	
T (K)	3-1	5-1	7-1	9-1	3-1	5-1	7-1	9-1
5	9.58E-11	2.24E-11	4.37E-12	6.43E-13	2.30E-11	1.08E-11	5.63E-12	2.88E-12
6	9.23E-11	2.55E-11	6.27E-12	1.23E-12	2.30E-11	1.09E-11	5.73E-12	2.93E-12
7	8.88E-11	2.77E-11	8.01E-12	1.93E-12	2.30E-11	1.09E-11	5.79E-12	2.98E-12
8	8.54E-11	2.93E-11	9.56E-12	2.68E-12	2.28E-11	1.09E-11	5.84E-12	3.02E-12
9	8.24E-11	3.04E-11	1.09E-11	3.45E-12	2.26E-11	1.08E-11	5.86E-12	3.06E-12
10	7.97E-11	3.12E-11	1.21E-11	4.19E-12	2.25E-11	1.07E-11	5.88E-12	3.09E-12
11	7.73E-11	3.17E-11	1.30E-11	4.89E-12	2.23E-11	1.06E-11	5.88E-12	3.13E-12
12	7.51E-11	3.21E-11	1.39E-11	5.55E-12	2.21E-11	1.05E-11	5.88E-12	3.16E-12
13	7.31E-11	3.24E-11	1.46E-11	6.15E-12	2.19E-11	1.04E-11	5.88E-12	3.19E-12
14	7.12E-11	3.25E-11	1.52E-11	6.70E-12	2.17E-11	1.03E-11	5.87E-12	3.22E-12
15	6.95E-11	3.26E-11	1.57E-11	7.19E-12	2.15E-11	1.02E-11	5.85E-12	3.25E-12
16	6.80E-11	3.26E-11	1.61E-11	7.64E-12	2.14E-11	1.01E-11	5.84E-12	3.28E-12
17	6.65E-11	3.26E-11	1.65E-11	8.03E-12	2.12E-11	9.96E-12	5.82E-12	3.30E-12
18	6.51E-11	3.25E-11	1.67E-11	8.38E-12	2.11E-11	9.86E-12	5.81E-12	3.32E-12
19	6.38E-11	3.23E-11	1.70E-11	8.68E-12	2.09E-11	9.77E-12	5.79E-12	3.34E-12
20	6.25E-11	3.22E-11	1.71E-11	8.95E-12	2.08E-11	9.68E-12	5.77E-12	3.36E-12
21	6.13E-11	3.20E-11	1.72E-11	9.18E-12	2.06E-11	9.60E-12	5.75E-12	3.38E-12
22	6.02E-11	3.17E-11	1.73E-11	9.38E-12	2.05E-11	9.51E-12	5.73E-12	3.40E-12
23	5.91E-11	3.15E-11	1.74E-11	9.54E-12	2.04E-11	9.44E-12	5.71E-12	3.41E-12
24	5.80E-11	3.12E-11	1.74E-11	9.68E-12	2.03E-11	9.36E-12	5.69E-12	3.43E-12
25	5.70E-11	3.09E-11	1.74E-11	9.80E-12	2.02E-11	9.29E-12	5.67E-12	3.44E-12
26	5.60E-11	3.06E-11	1.74E-11	9.89E-12	2.01E-11	9.22E-12	5.66E-12	3.45E-12
27	5.50E-11	3.03E-11	1.73E-11	9.96E-12	2.00E-11	9.15E-12	5.64E-12	3.46E-12
28	5.40E-11	3.00E-11	1.73E-11	1.00E-11	1.99E-11	9.09E-12	5.62E-12	3.47E-12
29	5.31E-11	2.97E-11	1.72E-11	1.01E-11	1.98E-11	9.03E-12	5.60E-12	3.48E-12
30	5.22E-11	2.94E-11	1.71E-11	1.01E-11	1.97E-11	8.97E-12	5.58E-12	3.49E-12
31	5.13E-11	2.90E-11	1.70E-11	1.01E-11	1.96E-11	8.92E-12	5.56E-12	3.50E-12
32	5.04E-11	2.87E-11	1.69E-11	1.01E-11	1.95E-11	8.86E-12	5.55E-12	3.51E-12

33	4.96E-11	2.83E-11	1.68E-11	1.01E-11	1.95E-11	8.81E-12	5.53E-12	3.51E-12
34	4.88E-11	2.80E-11	1.66E-11	1.01E-11	1.94E-11	8.76E-12	5.51E-12	3.52E-12
35	4.80E-11	2.76E-11	1.65E-11	1.00E-11	1.93E-11	8.71E-12	5.50E-12	3.53E-12
36	4.72E-11	2.73E-11	1.63E-11	9.98E-12	1.92E-11	8.67E-12	5.48E-12	3.53E-12
37	4.64E-11	2.70E-11	1.62E-11	9.94E-12	1.92E-11	8.62E-12	5.46E-12	3.54E-12
38	4.57E-11	2.66E-11	1.60E-11	9.89E-12	1.91E-11	8.58E-12	5.45E-12	3.54E-12
39	4.49E-11	2.63E-11	1.59E-11	9.83E-12	1.90E-11	8.54E-12	5.43E-12	3.54E-12
40	4.42E-11	2.59E-11	1.57E-11	9.78E-12	1.90E-11	8.50E-12	5.42E-12	3.55E-12
41	4.35E-11	2.56E-11	1.56E-11	9.71E-12	1.89E-11	8.46E-12	5.40E-12	3.55E-12
42	4.28E-11	2.53E-11	1.54E-11	9.65E-12	1.89E-11	8.42E-12	5.39E-12	3.55E-12
43	4.22E-11	2.50E-11	1.52E-11	9.58E-12	1.88E-11	8.38E-12	5.38E-12	3.56E-12
44	4.15E-11	2.46E-11	1.51E-11	9.50E-12	1.88E-11	8.35E-12	5.36E-12	3.56E-12
45	4.09E-11	2.43E-11	1.49E-11	9.43E-12	1.87E-11	8.32E-12	5.35E-12	3.56E-12
46	4.03E-11	2.40E-11	1.47E-11	9.35E-12	1.87E-11	8.28E-12	5.33E-12	3.56E-12
47	3.97E-11	2.37E-11	1.46E-11	9.27E-12	1.86E-11	8.25E-12	5.32E-12	3.56E-12
48	3.91E-11	2.34E-11	1.44E-11	9.20E-12	1.86E-11	8.22E-12	5.31E-12	3.56E-12
49	3.85E-11	2.31E-11	1.43E-11	9.11E-12	1.85E-11	8.19E-12	5.30E-12	3.56E-12
50	3.79E-11	2.28E-11	1.41E-11	9.03E-12	1.85E-11	8.16E-12	5.28E-12	3.56E-12
51	3.74E-11	2.25E-11	1.39E-11	8.95E-12	_			
52	3.68E-11	2.22E-11	1.38E-11	8.87E-12	_			
53	3.63E-11	2.19E-11	1.36E-11	8.79E-12	_			
54	3.58E-11	2.16E-11	1.35E-11	8.70E-12	_			
55	3.52E-11	2.13E-11	1.33E-11	8.62E-12				
56	3.47E-11	2.11E-11	1.32E-11	8.54E-12				
57	3.43E-11	2.08E-11	1.30E-11	8.46E-12	_			
58	3.38E-11	2.05E-11	1.29E-11	8.37E-12	_			
59	3.33E-11	2.03E-11	1.27E-11	8.29E-12	_			
60	3.29E-11	2.00E-11	1.26E-11	8.21E-12	_			
61	3.24E-11	1.98E-11	1.24E-11	8.13E-12	_			
62	3.20E-11	1.95E-11	1.23E-11	8.05E-12	_			
63	3.15E-11	1.93E-11	1.21E-11	7.97E-12	_			
64	3.11E-11	1.91E-11	1.20E-11	7.89E-12	_			
65	3.07E-11	1.88E-11	1.19E-11	7.81E-12				
66	3.03E-11	1.86E-11	1.17E-11	7.73E-12				
67	2.99E-11	1.84E-11	1.16E-11	7.66E-12	_			
68	2.95E-11	1.82E-11	1.15E-11	7.58E-12	_			
69	2.91E-11	1.79E-11	1.14E-11	7.50E-12	_			
70	2.88E-11	1.77E-11	1.12E-11	7.43E-12	_			
71	2.84E-11	1.75E-11	1.11E-11	7.36E-12	_			
72	2.80E-11	1.73E-11	1.10E-11	7.28E-12	_			
73	2.77E-11	1.71E-11	1.09E-11	7.21E-12				
74	2.74E-11	1.69E-11	1.07E-11	7.14E-12				
75	2.70E-11	1.67E-11	1.06E-11	7.07E-12				
76	2.67E-11	1.65E-11	1.05E-11	7.00E-12				
77	2.64E-11	1.63E-11	1.04E-11	6.93E-12				
78	2.60E-11	1.62E-11	1.03E-11	6.86E-12	_			
79	2.57E-11	1.60E-11	1.02E-11	6.79E-12				

80	2.54E-11	1.58E-11	1.01E-11	6.73E-12
81	2.51E-11	1.56E-11	9.96E-12	6.66E-12
82	2.48E-11	1.54E-11	9.86E-12	6.60E-12
83	2.45E-11	1.53E-11	9.75E-12	6.53E-12
84	2.43E-11	1.51E-11	9.65E-12	6.47E-12
85	2.40E-11	1.49E-11	9.55E-12	6.41E-12
86	2.37E-11	1.48E-11	9.45E-12	6.35E-12
87	2.34E-11	1.46E-11	9.36E-12	6.29E-12
88	2.32E-11	1.45E-11	9.26E-12	6.23E-12
89	2.29E-11	1.43E-11	9.17E-12	6.17E-12
90	2.27E-11	1.42E-11	9.08E-12	6.11E-12
91	2.24E-11	1.40E-11	8.99E-12	6.05E-12
92	2.22E-11	1.39E-11	8.90E-12	6.00E-12
93	2.19E-11	1.37E-11	8.81E-12	5.94E-12
94	2.17E-11	1.36E-11	8.72E-12	5.89E-12
95	2.15E-11	1.34E-11	8.64E-12	5.83E-12
96	2.12E-11	1.33E-11	8.55E-12	5.78E-12
97	2.10E-11	1.32E-11	8.47E-12	5.72E-12
98	2.08E-11	1.30E-11	8.39E-12	5.67E-12
99	2.06E-11	1.29E-11	8.31E-12	5.62E-12
100	2.04E-11	1.28E-11	8.23E-12	5.57E-12

Table S3: Python program for generating PES.

Program for generating PES	Analytical expression
Program for generating PES# Import math Library import math; import os; path = os getewd() print(path)for lin range (0.1.30): phi = int() directory2 = path = ''' + ''%s''%(str(l)) if not os path exists(directory2): os.makedirs(directory2) for k in range (0.1.30): theta2 = int(k) directory1 = directory2 + ''' + ''%s''%(str(k)) if not os.path.exists(directory1): os.makedirs(directory1)) for j in range (0.1.15): theta1 = int(j) directory = path = ''' + ''%s''%(str(j)) if not os.path.exists(directory1): os.makedirs(directory1)) for j in range (0.1.15): theta1 = int(j) directory = path = ''' + ''%s''%(str(j)) if not os.path.exists(directory1): os.chdir(directory1) for j in range (0.1.15): theta1 = int(j) directory = path = ''' + ''%s''%(str(j)) if not os.path.exists(directory1): os.chdir(directory1) directory2 = 0.6445 rh = 0.3714 a 1 = math.sin(math.radians(theta1))*math.sin(math.radians(phi)) a3 = math.cos(math.radians(theta1)) b1 = math.sin(math.radians(theta1)) b1 = math.sin(math.radians(theta1)) b1 = math.sin(math.radians(theta1)) b1 = math.sin(math.radians(theta1)) cl = math.sin(math.radians(theta2)) cl = readh.sin(math.radians(theta1)) cl = math.sin(math.radians(theta1)) cl = math.sin(math.radians(theta2)) cl = readh.sin(math.radians(theta2)) cl = math.sin(math.radians(theta2)) cl = math.sin(math.radians(theta2)) cl = math.sin(math.radians(theta2)) cl = R-rh%b2 cl = math.sin(math.radians(theta2)) cl = R-rh%b2 cl = R-rh%b2 cl = R-rh%b2 cl = R-rh%b2 cl = math.sin(math.radians(theta2)) cl = R-rh%b2 cl = R	Analytical expression General Experssion: C $r1*sin(\theta1)*sin(\phi) r1*sin(\theta1)*cos(\phi) r1*cos(\theta1)$ C $r2*sin(\theta1)*sin(\phi) r2*sin(\theta1)*cos(\phi) r2*cos(\theta1)$ C $r2*sin(\theta1)*sin(\phi) r2*sin(\theta1)*cos(\phi) r2*cos(\theta1)$ C $r2*sin(\theta1)*sin(\phi) -r2*sin(\theta1)*cos(\phi) -r2*cos(\theta1)$ C $r1*sin(\theta1)*sin(\phi) -r1*sin(\theta1)*cos(\phi) -r1*cos(\theta1)$ H 0.0000 $rh*sin(\theta2)$ $R + rh*cos(\theta2)$ Stationary point (Global Minimum) $\phi, \theta_2, \theta_1 = 0^\circ, 90^\circ, 90^\circ$ and $R = 3.4$ Å C 0.0000 1.9534 0.0000 C 0.0000 1.9534 0.0000 C 0.0000 1.9534 0.0000 C 0.0000 0.6445 0.0000 C 0.0000 -0.6445 0.0000 C 0.0000 -0.3714 3.4000
J= open(">d.gl)" >(d), >w+' J # w+=write/r=read f.write("""%>mprocshared=4 %>%mem=10GB %>%chk=>(d >/d_ od_chk # CCSD=(T,SaveAmplitudes,ReadAmplitudes)/aug-cc-pVTZ	
R = %d. phi=%d. theta2=%d. theta1=%d.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

f.close() os.chdir(directory) os.chdir(directory1)	""" %(phi,theta2,theta1,R,phi,theta2,theta1, r1*a1,r1*a2,r1*a3, r2*a1,r2*a2,r2*a3, -r2*a1,-r2*a2,-r2*a3, rh*b1,r21))	-rl*a1,-rl*a2,-rl*a3,rh*b1,r11,-
	f.close() os.chdir(directory) os.chdir(directory1)	

<u>Table S4:</u> *Ab initio* energies (C_4 - H_2) at various geometries compared to recreated PES (from radial terms).

Geometry $(\boldsymbol{\phi}, \boldsymbol{\theta}_2, \boldsymbol{\theta}_1, \mathbf{R})$	Ab initio energy	Recreated PES (from radial terms)
0°, 90°, 90°, 3.4 Å	-147.79	-147.47
0°, 0°, 0°, 5.4 Å	-144.83	-144.49
0°, 90°, 0°, 5.9 Å	-18.78	-17.89

Table S5: Computed properties of C₄ compared to previous literature.

Properties (C ₄)	Current work	Previous Literature
Vibrational Frequencies (cm ⁻¹)	CCSD(T)/aug-cc-pVQZ (Harmonic)	Experimental ¹ :
	No. Freq in cm ⁻¹ [D] (mode) 1. 2107 [1] (stretching Σ_g) 2. 1596 [1] (stretching Σ_u) 3. 942 [1] (stretching Σ_g) 4. 369 [2] (bending Π_g) 5. 168 [2] (bending Π_u) [D]: Degeneracy	No. Freq in cm ⁻¹ 1. 2057 2. 1549 3. N.A. 4. 323 5. 160
Bond lengths (Å)	1.2890 (inner) 1.3089 (outer) (CCSD(T)/CBS(DTQ))	Experimental: $1.304 \text{ (all same)}^1$ 1.3167 (inner) 1.2960 (outer) ² 1.2840 (inner) 1.3060 (outer) ³

- 1. "National Institute of Standards and Technology | NIST." NIST, 22 Dec. 2023, <u>www.nist.gov</u>.
- 2. Lique, François, et al., Phys. Chem. Chem. Phys., 12, 15672-15680 (2010).
- 3. Van Orden, Alan, et al., Chem. Rev., 98, 2313-2358 (1998).

<u>Figure S1</u>: Cross-sections for the rotational excitation (1-N) transitions of collision of C₄ with *ortho* - H₂ till energy range of 300 cm⁻¹.

<u>Figure S2</u>: Comparison between the cross-sections ($\Delta j = 2$) computed for C₄ molecule due to its collision with *para* and *ortho* – H₂ for different transitions as shown: Solid corresponds to *ortho* – H₂ while dotted corresponds to para – H₂.

<u>Figure S3</u>: Cross-sections for the rotational excitation transitions ($\Delta j = 2$) of collision of C₄ with *ortho* – H₂ till energy range of 300 cm⁻¹.

<u>Figure S4</u>: Cross-sections for the rotational excitation transitions (1-N) of collision of C₄ with *para* – H₂ till energy range of 300 cm⁻¹.

Figure S5: PES at various angular coordinates (ϕ , θ_2 , θ_1 , R) with respect to R.

<u>Figure S6:</u> Variation of R (optimised) with respect to θ_2 vs θ_1 at $\phi = 0^\circ$.

