Supplemental Material 1 for Phys. Chem. Chem. Phys.

Neural network potential energy surface assisted molecular

dynamics study on pyrolysis behaviors of two spiro-

hydrocarbons

Xiao Hang ^{a,b}, Bin Yang ^{a,b}*

^a Center for Combustion Energy and Department of Energy and Power Engineering, Tsinghua

University, Beijing 100084, China

b Key Laboratory for Thermal Science and Power Engineering of MOE, International Joint Laboratory

dp_version 2.1.5		Learning rate		
descriptor		type	exp	
type	se_a	start_lr	0.001	
1	[52, 40] (Fuel 1)	decay_steps	400	
sel	[56, 36] (Fuel 2)	training		
rcut_smth	1 Å	stop_batch	400000	
rcut	6 Å	dp_compress	TRUE	
neuron	[25, 50, 100]	model_devi_dt	0.0001	
resnet_dt	FALSE	model_devi_skip	100	
axis_neuron	12	model_devi_f_trust_lo	0.15	
fitting net		model_devi_f_trust_hi	0.45	
neuron	[240, 240, 240]	use_cluster	TRUE	
resnet_dt	TRUE	cluster_cutoff	3.5 Å	

Table S1. Several key parameters set for training potential energy surfaces.

^{*} Corresponding author. E-mail: byang@tsinghua.edu.cn

on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China

Fuel 1		Fuel 2					
Iteration	T/K	Time/p	Accuracy	Iteration	T/K	Time/ps	Accuracy
0	2500	0.2	83.86%	0	2500, 2800	0.2	67.06%
1	2500	0.2	98.75%	1	2500, 2800	0.2	94.64%
2	2500	0.2	98.96%	2	2500, 2800	0.2	96.91%
3_check	2500	0.2	99.02%	3	2500, 2800	0.2	98.62%
3	2500	0.4	99.01%	4_check	2500, 2800	0.2	99.08%
4	2500	0.8	98.84%	4	2500, 2800	0.4	98.87%
5	2500	0.8	98.42%	5	2500, 2800	0.4	98.41%
6	2500	0.8	98.91%	6_check	2500, 2800	0.4	99.07%
7	2500	0.8	98.86%	6	2500, 2800	0.8	98.89%
8	2500	0.8	98.62%	7	2500, 2800	0.8	98.76%
9_check	2500	0.8	99.21%	8	2500, 2800	0.8	98.78%
9	2500	1.6	99.03%	9_check	2500, 2800	0.8	99.02%
10	2500	1.6	97.93%	9	2500, 2800	1.6	98.75%
11_check	2500	1.6	99.20%	10_check	2500, 2800	1.6	99.04%
11	2500	3.2	98.87%	10	2500, 2800	3.2	98.88%
12	2500	3.2	95.42%	11_check	2500, 2800	3.2	99.03%
13	2500	3.2	98.15%	11	2500, 2800	6.4	98.72%
14	2500	3.2	97.96%	12	2500, 2800	6.4	98.27%
15	2500	3.2	98.40%	13	2500, 2800	6.4	98.64%
16	2500	3.2	98.36%	14	2500, 2800	6.4	98.09%
17	2500	3.2	98.01%	15_check	2500, 2800	6.4	99.04%
18_check	2500	3.2	99.47%	15	2500, 2800	12.8	98.80%
18	2500	6.4	99.36%	16	2500, 2800	12.8	98.82%
19	2500	6.4	98.95%	17	2500, 2800	12.8	97.94%
20_check	2500	6.4	99.34%	18	2500, 2800	12.8	98.70%
20	2500	12.8	99.07%	19_check	2500, 2800	12.8	99.06%
21	2500	12.8	98.07%	19	2500, 2800	25.6	99.01%
22	2500	12.8	96.57%	20	2500, 2800	25.6	98.93%
23	2500	12.8	97.64%	21_check	2500, 2800	25.6	99.38%
24	2500	12.8	98.66%	21	2500, 2800	51.2	98.93%
25_check	2500	12.8	99.22%	22	2500, 2800	51.2	97.82%
25	2500	25.6	99.00%	23	2500, 2800	51.2	98.30%
26	2500	25.6	98.54%	24_check	2500, 2800	51.2	99.39%
27_check	2500	25.6	99.29%	24	2500, 2800	102.4	99.38%
27	2500	51.2	99.25%	25	2500, 2800	102.4	98.98%
27_check	2500	51.2	99.17%	26	2500, 2800	102.4	98.97%
28	2500	102.4	98.80%	27	2500, 2800	102.4	99.11%
29	2500	102.4	93.76%				
30	2500	102.4	99.03%				

Table S2. Temperature, time, and "Accuracy" for each iteration of training for two fuels.

31_check	2500	102.4	99.20%				
Continue with Table S2							
31	2800	102.4	98.72%				
32	2800	102.4	95.91%				
33_check	2800	102.4	99.21%				

Scheme **S1**. Primary pathways of all structures of initial pyrolysis products of Fuel **2** at 2500K and 2800K. R1 and R2 are for structure a), R3 is for structure b), R4 and R5 are for structure c), R6 and R7 are for structure d), R8 is for structure e), R9 and R10 are for structure f).