
Supplementary material - Sensitivity of solid phase stability to the
interparticle potential range : studies of a new Lennard-Jones like

model

Computational details of the calculations reported in the
main article are provided here, for both the LSMC and ther-
modynamic integration simulations. In particular, all pa-
rameter values are made explicit by providing our simula-
tion input files (see folder Simulations of this supplementary
material). Moreover, raw simulation results of the Lattice-
Switch Monte-Carlo (LSMC) simulations are provided in the
file Simulations/LSMC/data.txt and those of the thermody-
namic integration calculations can be found below in Table S1.

1 Lattice-Switch Monte-Carlo calcula-
tions

The Lattice-Switch Monte-Carlo simulations were performed
with the program DL_MONTE version 2.07 [1]. In these simu-
lations, we have used ϵ = 1 kBK and σ = 1 Å. With this choice
of ϵ, the physical temperature T and the reduced temperature
T ∗ = kBT/ϵ are identical

1.1 DL_MONTE input files

For performing LSMC simulations in DL_MONTE, the follow-
ing files must be provided : CONTROL, FIELD, CONFIG.1,
CONFIG.2, and CONFIG. Note that DL_MONTE operates
with physical units rather than the reduced units quoted in
the main paper. Our input files for a simulation at T = 0.1
and p = 1.7 katm (state point near the first hcp-fcc transition)
are provided in folder Simulation/LSMC. Information on the
parameters used for other transition lines, temperatures and
system sizes are given in the file README_LSMC.txt inside the
LSMC folder.

The FIELD file

The FIELD file contains options for energy units as well as the
potential used during the simulation. Since we use the directive
‘UNITS K’, the energies in the output files are in kBT units, i.e.
in reduced units since ϵ = 1kBT .
We have modified DL_MONTE’s source code to operate with
the Lennard-Jones like (ljl) potential. The use of this potential
is specified by the following line :

LJ core LJ core ljl 1.0 1.0 2.0

where the three numbers correspond to ϵ, σ and rc respectively.
For more information regarding available options, the reader is
referred to the DL_MONTE manual [2].

The CONTROL file

The CONTROL file contains the simulation main directives.
The DL_MONTE tutorial[3] is a good resource to understand
the LSMC directives in DL_MONTE.

A LSMC simulation starts with the computation of the
bias function. The tutorial explains how to determine the range
of order parameter over which the bias function should be de-
termined. Here, we only give parameters values relevant to our
calculations for the case of the first transition line at T = 0
and p = 1.7 katm. Results and other parameters are listed in
the "README_LSMC.txt". The switchfreq is the frequency
at each the simulation attempts a lattice-switch move. Here,
its the number of atoms of the simulation cells N = 216. The
number of steps is fixed to 200000 sweeps. The following lines
are LSMC directives :

fed method TM tri 4320000 4320 # Nout Nupdate
fed order param ps 200 -15 15 1 # Nbins xmin xmax npow

Configuration files

CONFIG.1 and CONFIG.2 files contain the two candidates con-
figurations at T = 0 between which the system will switch.
The CONFIG file contains the concatenation of CONFIG.1
and CONFIG.2 in order (not necessarily at T = 0). For the
simulation with N = 216, these CONFIG files are provided
in the tutorial page. Configuration files for hcp and fcc for
other system sizes and densities can be generated by using
a script provided with the program MonteSwitch[4] (see files
lattice_in_hcp_fcc.f95 and kinds_mod.f95).

1.2 Calculations of the uncertainties

Uncertainties on the coexistence pressure are calculated from
the uncertainty in the difference of the volumes of the coexisting
phases, σ∆V = σVhcp

+ σVfcc
and from ∆G, the latter being

determined via a block analysis. Then

σp =
∣∣∣σ∆G

∆V

∣∣∣+ ∣∣∣∣∆Gσ∆V

(∆V )2

∣∣∣∣ . (1)
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The uncertainty on the coexistence density is deduced from the
uncertainty on the coexistence pressure by using the equation
of state p = f(ρ):

dp =
df(ρ)

dρ
dρ ⇒ σρ = σp/f

′(ρ). (2)

We derive now Eq. (1), which is an upper bound on the
error. To obtain this upper bound, we use the following two
standard rules: (1) add absolute errors when performing an
addition or subtraction and (2) add the relative deviations when
computing a product or ratio, e.g. |dZ/Z| = |dX/X| + |dY/Y|)
if Z = X/Y . According to the first rule, the upper bound for
the uncertainty of a quantity X − Y is

σX−Y = σX + σY . (3)

The second rule is a consequence of the first rule and of the
logarithmic derivative

d ln(x) = dx/x. (4)

From Eq. (3) we get

dPi+1 = dPi + d

(
∆Gi

∆Vi

)
. (5)

From Eq. (4) we get

d

(
∆Gi

∆Vi

)
=

∆Gi

∆Vi
d ln

(
∆Gi

∆Vi

)
.

From the properties of the logarithm, we have

d ln

(
∆Gi

∆Vi

)
=

d∆Gi

∆Gi
− d∆Vi

∆Vi
.

Inserting this expression in Eq. (5), we find

dPi+1 = dPi +
d∆Gi

∆Vi
− ∆Gid∆Vi

(∆Vi)2
(6)

By taking absolute values, we get :

σPi+1 = σPi +

∣∣∣∣σ∆Gi

∆Vi

∣∣∣∣+ ∣∣∣∣∆Giσ∆Vi

(∆Vi)2

∣∣∣∣ (7)

The phase diagram was computed with LSMC simulation at
constant pressure, so σPi

= 0. We thus find the upper bound
given by Eq. (1). The uncertainties on ∆V were computed
with pymbar ([5],[6]).

2 Thermodynamic integration calcula-
tions

The TI calculations were performed using GROMACS version
2018, compiled in double precision. In these simulations, we
have used the Lennard-Jones parameters ϵ = 0.99768 kJ.mol−1

and σ = 0.34050 nm (values for argon). The factor ϵ/kB that

intervenes when computing a reduced temperature is thus equal
to ϵ/kB = 119.9933 K.

We implemented the Wang et al.[7] potential as a tabulated
potential. The corresponding file (table.xvg) is provided with
the other simulation input files (see section 2.1).

The TI calculations were performed by using the same
methodology as in Ref. [8]. The supplementary material of
Ref [8] provides bash scripts to compute the different contri-
butions A0, ∆A1 and ∆A2. We adapted these scripts to the
more recent version 2018 of gromacs. We improved also the
script that computes ∆A1 by using the -rerun option of gro-
macs’s program mdrun. This improves vastly the performance
of the calculation of ∆A1. The script that computes ∆A2

with a 15 point Gauss-Legendre quadrature needs an input
file (landas.dat) which lists the 15 “intermediate” spring con-
stants and the associated weights for the numerical integration
(including a factor arising from the change of variable). We
provide a Python script, calc_GaussLegendre_xi_wi.py, that
computes these “intermediate” spring constants and weights.

2.1 Simulation input files
The folder Simulations/TI contains the simulation input files,
as well as analysis scripts that we used to compute the free
energy of the hcp and fcc phases for the state point T = 0.1
and ρ = 1.20. These files are stored in 4 subfolders :

• 1-EinsteinCrystal : simulation of an Einstein crystal
with one fixed atom and (N − 1) independent harmonic
oscillators.

• 2-U_LJ : 0-step “simulation” to calculate E
(T=0)
pair , which is

the sum of the pair interactions in the perfect crystal at
T = 0.

• 3-DeltaA1 : calculation of ∆A1 using Bennet’s formula.
It uses the results from the two previous simulations.

• 4-DeltaA2 : calculation of ∆A2. This involves 15 simula-
tions with various spring constants.

In each folder, there is a script with a name with
form calc_*.sh, namely calc_traj.sh, calc_U_LJ.sh,
calc_deltaA1.sh and calc_deltaA2.sh respectively. By ex-
ecuting these scripts one after another, one obtains the val-
ues of ∆A1 and ∆A2 at T = 0.1 and ρ = 1.20. The file
README_TI.txt explains how to adapt the simulation input files
and the scripts to compute the free energy at another temper-
ature or density.

2.2 Numerical results
Table S1 complements Table 1 of our article by providing some
supplementary information: the maximal spring constants used
and the contributions A0 + kBT ln(NΛ3

T /V ), ∆A1 and ∆A2 to
the free energy (see eq. (4) of the paper). Notice that the free
energies Ahcp and Afcc in Table S1 are in reduced units and per
particle, while the free energy differences are expressed in units
of NkBT in Table 1 of our article.
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Table S1: Maximal spring constant kE (in kJ.mol−1.nm−2) and contributions A0, ∆A1 and ∆A2 (in units of NkBT ) to the
free energy A (in reduced units per particle) for the HCP and FCC phases of the LJL solid. The free energies from Ref. [7] are
in reduced units per particle.

T ρ kE A0
HCP FCC

∆A1 ∆A2 Ahcp Ref.[7] ∆A1 ∆A2 Afcc Ref.[7]
0.1 1.16 448956 16.9685 −58.5914 −7.6207 −4.9244 −4.9469 −58.5298 −7.6608 −4.9222 −4.9241
0.1 1.20 448956 16.9686 −55.1582 −7.4295 −4.5619 −4.5848 −55.1715 −7.4706 −4.5674 −4.5691
0.1 1.24 448956 16.9686 −50.9641 −7.2604 −4.1256 −4.1487 −51.0673 −7.2883 −4.1387 −4.1404
0.1 1.28 448956 16.9687 −46.0015 −7.0965 −3.6130 −3.6363 −46.1907 −7.1128 −3.6335 −3.6350
0.1 1.32 448956 16.9687 −40.2637 −6.9318 −3.0227 −3.0455 −40.5135 −6.9455 −3.0491 −3.0505

0.204 1.20 300000 15.2966 −27.0255 −6.8378 −3.7877 −3.8324 −27.0318 −6.8673 −3.7950 −3.7981
0.308 1.20 300000 14.6795 −17.8933 −6.8486 −3.0993 −3.1615 −17.8980 −6.8760 −3.1092 −3.1084
0.4 1.20 300000 14.2879 −13.7737 −6.8442 −2.5321 −2.6178 −13.7771 −6.8707 −2.5441 −2.5479

0.503 1.20 300000 13.9447 −10.9492 −6.8442 −1.9360 −2.0334 −10.9523 −6.8670 −1.9490 −1.9437
0.607 1.00 130000 12.4102 −10.7382 −6.6478 −3.0203 −3.1014 −10.7019 −6.6787 −3.0170 −2.9764
0.607 1.10 200000 13.0556 −10.2554 −6.7341 −2.3879 −2.4896 −10.2328 −6.7591 −2.3893 −2.3660
0.607 1.20 300000 13.6631 −9.0699 −6.8439 −1.3663 −1.4806 −9.0724 −6.8699 −1.3836 −1.3706
0.802 1.0 140000 12.1039 −8.1180 −6.7466 −2.2141 −2.3336 −8.0958 −6.7628 −2.2093 −2.1676
0.802 1.1 200000 12.6383 −7.7568 −6.7286 −1.4815 −1.6116 −7.7395 −6.7536 −1.4876 −1.4465
0.802 1.20 300000 13.2458 −6.8598 −6.8449 −0.3683 −0.5123 −6.8624 −6.8646 −0.3861 −0.3619
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