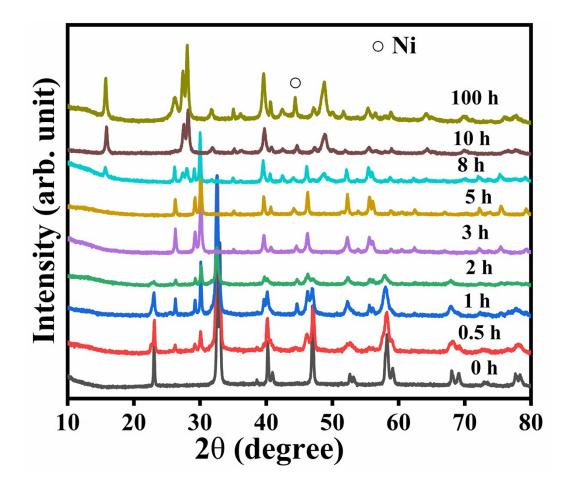

Supplementary Information

High activity in dry reforming of methane by thermally switchable double perovskite and in-situ generated molecular level nanocomposite


Akbar Hossain¹, Monotosh Bhattacharjee¹, Kalyan Ghorai¹, Jordi Llorca², M. Vasundhara³, Sounak Roy⁴, Parthasarathi Bera⁵, Md. Motin Seikh⁶,* and Arup Gayen¹,*

Scheme S1: Photograph of the fabricated reaction set up used to test DRM activity.

Fig. S1: Methane and carbon dioxide conversions owing to (a) CH_4 cracking and (b) CO_2 cracking at GHSV of 30000 h⁻¹ at 800 °C using He as carrier.

Fig. S2: Powder XRD patterns of LNMnO at various time intervals of DRM reaction. At any stipulated time, the reaction was stopped and then cooled in He flow to ~ 100 °C. The catalyst mesh was ground to powder and subsequently analysed for bulk phase analyses.

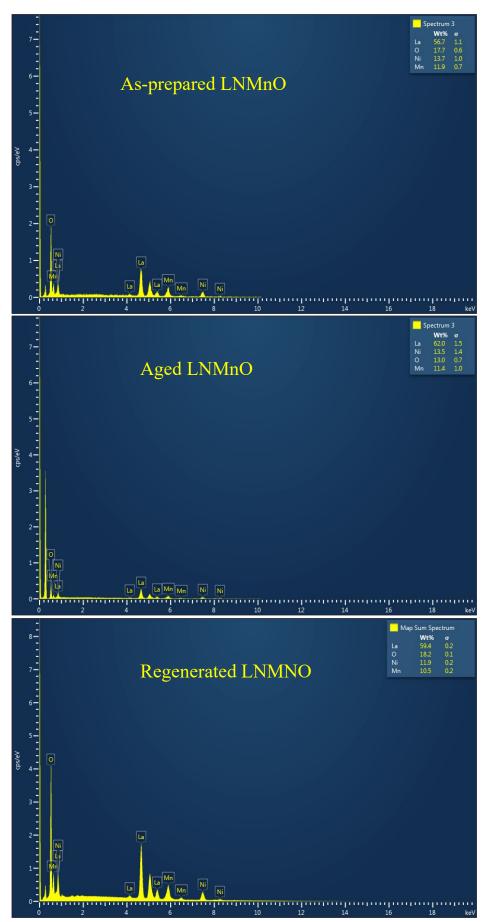


Fig. S3: EDX spectra of (a) fresh LNMnO, (b) aged LNMnO, and (c) regenerated LNMnO.

Sol-gel method of preparing La₂O₃, MnO, and NiO oxides

The individual oxides were prepared using the corresponding metal nitrates, namely $La(NO_3)_3.6H_2O$, $Mn(NO_3)_3.4H_2O$, and $Ni(NO_3)_2.6H_2O$ with citric acid as the fuel as elaborated in the main manuscript. The only change is associated with the calcination temperature and duration. The resulting fluffy mass was ground thoroughly to the powder form and subsequently calcined at 600 °C for 4 h, at 500 °C for 4 h, and at 500 °C for 3 h for the formation of La_2O_3 , MnO and NiO, respectively.

Preparation of metallic Ni

Nickel nitrate and citric acid (in 1:4 molar ratio) were at first taken in a beaker with \sim 50 mL of Millipore water. The resulting mixture was vigorously stirred for a whole night to create a uniform solution, and then it was heated to 80–100 °C to evaporate water, creating the metalcitrate gel. After the evaporation was finished, the xerogel began to burn beyond 150 °C into the desired material.

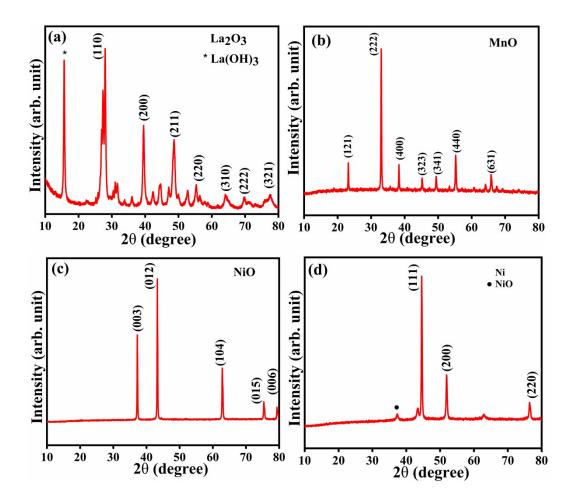


Fig. S4: Powder XRD patterns of (a) La₂O₃, (b) MnO, (c) NiO, and (d) metallic nickel.