Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2024

Supporting Information

Investigation of stability of D5SIC-DNAM-Incorporated DNA duplex in Taq Polymerase Binary system: A Systematic Classical MD Approach

Tanay Debnath ${ }^{1}$, G. Andres Cisneros ${ }^{1,2}$
${ }^{1}$ Department of Physics, University of Texas at Dallas, Richardson, TX, USA
${ }^{2}$ Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA

PDB id:4C8L:EXT ${ }_{\text {SYN }}$

PDB id: 4C8O:INT ${ }_{\text {SYN }}$
B.

2,6-dimethyl-2H-isoquiniline-1-thione D5SIC (DS)

2-methoxy-3-methyInaphthalene
DNAM(DN)
C.

Figure S1. A. Crystal structure of EXT EYN and $\mathrm{INT}_{\text {SYN }}$, B. 2D representations of DS and DN, C. Schematic representation of distance and angles associated with UB and adjacent NB.

Figure S2. RMSD obtained from A. AMOEBA and B. AMBER force field mediated simulations for all the systems.

Figure S3. DS-DN distances obtained from A. AMOEBA and B. AMBER force field mediated simulations for all the systems.

Figure S4. <UB-P-NB obtained from A. AMOEBA and B. AMBER force field mediated simulations for all the systems. In the crystal structure, <DS-P-DC and <DN-P-DG are 69.1 degree and 51.1 degree respectively for EXT SYN and 51 degree and 68 degree respectively for INT $_{\text {SYN }}$.

Figure S5. Δ RMSF of all three replicates (rep1: left, rep2: middle, rep3: right) with respect to ${ }^{I N T}$ SYN conformers obtained from AMBER force field mediated simulations.

Figure S6. a) RMSD, b) RMSF, c) DS-DN distances of all three replicates. d) UB-NB distance of no-hang EXT SYN systems obtained from AMBER force field mediated simulations.

Figure S7. a) RMSD, b) RMSF, c) DS-DN distances of all three replicates. d) UB-NB distance of no-hang $\mathrm{INT}_{\text {SYN }}$ systems obtained from AMBER force field mediated simulations.

Figure S8. Cross correlation matrix for a) EXT and b) INT (SYN: left, ANTI: right) conformers.

Figure S9. Coulomb ($E_{\text {Coul }}$) and vdW ($E_{\text {vdWW }}$) interaction energies for $D S$ and DN for $A . E X T T_{\text {SYN }}$ and B. $I N T_{\text {SYN. }}$.

Figure S10. Coulomb ($\mathrm{E}_{\text {Coul }}$) and vdW ($\mathrm{E}_{\mathrm{vdW}}$) interaction energies for DS and DN for A . $\mathrm{EXT}_{\text {ANTI }}$ and B . $\mathrm{INT}_{\text {ANTI }}$.

 $\mathrm{EXT}_{\text {ANTI }}$ (left), $\mathrm{INT}_{\text {ANTI }}$ (right) conformers.

