Electronic Supplementary Information

for

Molecular rotators anchored on rod-like anionic coordination polymer adhered by charge-assisted hydrogen bond

Hui Xiao,^a Wei-Yu Hu,^a Qing Wang,^b Cheng-Hui Zeng,^a Hao-Hong Li,^c Haiming Liu,^b Zi-Yi Du^{a,*} and Chun-Ting He^a

^aCollege of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

^bSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

^cCollege of Chemistry, Fuzhou University, Fuzhou 350108, China

*Correspondence to: Zi-Yi Du, E-mail: ziyidu@gmail.com

Empirical formula	C ₅ H ₁₄ NBr ₃ Cd (FW = 440.30)					
Temperature (K)	173(2)	203(2)	233(2)	273(2)	293(2)	313(2)
Space group		P2 ₁ /n				
<i>a</i> (Å)	7.5549(2)	7.5782(2)	7.6022(3)	7.6240(3)	7.6369(3)	7.6486(4)
<i>b</i> (Å)	16.4113(6)	16.4426(6)	16.4869(7)	16.5760(8)	16.6462(8)	16.7161(1)
<i>c</i> (Å)	9.6428(3)	9.6674(3)	9.6894(4)	9.7148(4)	9.7245(4)	9.7365(5)
V/ų	1176.06(7)	1184.39(7)	1193.67(9)	1206.82(9)	1215.46(9)	1224.93(1)
Z		4				
$D_{calcd}/\text{g cm}^{-3}$	2.487	2.469	2.450	2.423	2.406	2.388
μ/mm ⁻¹	11.995	11.910	11.818	11.689	11.606	11.516
GOF on F ²	1.052	1.066	1.045	1.059	1.061	1.043
$R_1, wR_2 [l > 2\sigma(l)]^a$	0.0288, 0.0615	0.0304, 0.0654	0.0384, 0.0850	0.0378, 0.0855	0.0419, 0.0947	0.0493, 0.1417
R_1 , wR_2 (all data)	0.0374, 0.0636	0.0500, 0.0690	0.0556, 0.0895	0.0669, 0.0938	0.0655, 0.1018	0.0835, 0.1589
Refined content for N1-containing cation ^b	1.000	0.824	0.747	0.688	0.645	0.632

Table S1 Summary of crystal data and structural refinements for 1 at different temperatures

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, wR_{2} = \{\sum w[(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum w[(F_{o})^{2}]^{2}\}^{1/2}$ b The N1/N1'-containing (*i*-PrNHMe₂)⁺ cation displays two-fold disordered during the structural refinement.

173 K			
Cd1–Br1	2.5989(4)	Cd1–Br2	2.6076(5)
Cd1–Br3	2.5758(4)	Cd1-Br1#1	2.9696(5)
Cd1–Br2#2	2.8773(4)		
203 K			
Cd1-Br1	2.5971(5)	Cd1–Br2	2.6056(5)
Cd1–Br3	2.5770(5)	Cd1–Br1#1	2.9728(5)
Cd1–Br2#3	2.8854(5)		
233 К			
Cd1–Br1	2.5961(6)	Cd1–Br2	2.6036(6)
Cd1–Br3	2.5754(6)	Cd1-Br1#1	2.9772(6)
Cd1–Br2#3	2.8950(6)		
273 K			
Cd1-Br1	2.5938(6)	Cd1–Br2	2.6011(6)
Cd1–Br3	2.5755(6)	Cd1–Br1#1	2.9806(7)
Cd1–Br2#3	2.9084(6)		
293 К			
Cd1-Br1	2.5928(7)	Cd1–Br2	2.6000(7)
Cd1–Br3	2.5732(7)	Cd1-Br1#1	2.9851(8)
Cd1–Br2#3	2.9159(7)		
313 K			
Cd1-Br1	2.591(1)	Cd1–Br2	2.5951(9)
Cd1–Br3	2.572(1)	Cd1–Br1#1	2.987(1)
Cd1–Br2#3	2.9269(9)		

Table S2 Selected bond lengths (Å) for ${\bf 1}$ at different temperatures

Symmetry codes: #1. 1 - x, 1 - y, 1 - z; #2. -x, 1 - y, 1 - z; #3. 2 - x, 1 - y, 1 - z.

D–H…A	D–H	Н…А	D…A	Angle
N1–H1…Br3	0.9999(3)	2.4619(4)	3.3572(3)	148.8(2)
N1–H1…Br3	0.9802(5)	2.4744(4)	3.3509(6)	148.7(3)
N1'-H1'…Br3	0.9793(3)	2.4231(4)	2.3324(3)	154.3(1)
N1–H1…Br3	0.9803(7)	2.4601(4)	3.3440(8)	149.8(4)
N1'-H1'…Br3	0.9822(2)	2.4222(4)	3.3252(2)	152.6(1)
N1–H1…Br3	0.9798(8)	2.4582(5)	3.3427(1)	150.0(5)
N1'-H1'…Br3	0.9802(2)	2.3961(5)	3.3220(2)	157.3(1)
N1–H1…Br3	0.9820(2)	2.4471(6)	3.3346(1)	151.4(6)
N1'-H1'…Br3	0.9792(1)	2.4389(6)	3.3555(3)	155.1(1)
N1–H1…Br3	0.9790(1)	2.4267(7)	3.3211(1)	151.7(8)
N1'-H1'…Br3	0.9789(2)	2.4423(7)	3.3554(3)	155.1(2)
	D-H…A N1-H1…Br3 N1-H1…Br3 N1'-H1'…Br3 N1-H1…Br3 N1-H1…Br3 N1-H1…Br3 N1-H1…Br3 N1-H1…Br3 N1-H1…Br3 N1-H1…Br3 N1-H1…Br3 N1-H1…Br3	D-H···A D-H N1-H1···Br3 0.9999(3) N1-H1···Br3 0.9802(5) N1'-H1'···Br3 0.9793(3) N1-H1···Br3 0.9803(7) N1'-H1'···Br3 0.9822(2) N1-H1···Br3 0.9798(8) N1'-H1'···Br3 0.9802(2) N1-H1···Br3 0.9820(2) N1-H1···Br3 0.9792(1) N1'-H1'···Br3 0.9790(1) N1'-H1···Br3 0.9789(2)	D-H···AD-HH···AN1-H1···Br3 $0.9999(3)$ $2.4619(4)$ N1-H1···Br3 $0.9802(5)$ $2.4744(4)$ N1'-H1···Br3 $0.9793(3)$ $2.4231(4)$ N1-H1···Br3 $0.9803(7)$ $2.4601(4)$ N1'-H1···Br3 $0.9822(2)$ $2.4222(4)$ N1-H1···Br3 $0.9798(8)$ $2.4582(5)$ N1'-H1···Br3 $0.9802(2)$ $2.3961(5)$ N1'-H1···Br3 $0.9792(1)$ $2.4389(6)$ N1'-H1···Br3 $0.9790(1)$ $2.4267(7)$ N1'-H1···Br3 $0.9789(2)$ $2.4423(7)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

<i>Т</i> (К)	τ ₀ (s)	ε_0	€∞	Δε
150	1.0×10 ⁻⁴	3.39	3.21	0.18
160	3.9×10 ⁻⁵	3.44	3.23	0.21
170	1.5×10 ⁻⁵	3.48	3.25	0.23
180	7.7×10 ⁻⁶	3.53	3.28	0.25
190	3.5×10 ⁻⁶	3.58	3.30	0.28
200	1.8×10 ⁻⁶	3.62	3.33	0.29
210	1.0×10 ⁻⁶	3.68	3.37	0.31
220	5.4×10 ⁻⁷	3.74	3.41	0.33
230	3.8×10 ⁻⁷	3.81	3.45	0.36

Table S4 The fitted parameters with Debye equation for 1 at 150 $^{\sim}$ 230 K

Fig. S1 TGA curve of 1.

Fig. S2 View of the structure of 1 at 173 K.

Fig. S3 Newman projections of the N1-containing (i-PrNHMe₂)⁺ ion at 173 K (a), 313 K (b), and the N1'-containing one (c) along the N–C bond.

Fig. S4 Overlapping maps of the crystal structures of **1** (at 313 K) before/after geometry optimization (shaded in yellow/purple, respectively), with merely the N1-containing (*i*-PrNHMe₂)⁺ cations (a) or merely the N1'-containing ones (b).

Fig. S5 Above: Views of the Hirshfeld surface (mapped with d_{norm}) of the N1-containing (*i*-PrNHMe₂)⁺ cation in 1 at 313 K, indicating the relative strength of the intermolecular interactions surrounding the (*i*-PrNHMe₂)⁺ cation. The red, white, and blue regions represent molecular contacts shorter than, equal to, and longer than the van der Waals distance, respectively. Below: 2D fingerprint plots showing atomic contacts to the Hirshfeld surface of the N1-containing (*i*-PrNHMe₂)⁺ cation in 1 at 313 K, where d_i and d_e denote the distances from the surface to the nearest atom interior and exterior to the surface, respectively. The 2D plots were created by binning (d_e , d_i) pairs and coloring each bin of the resulting 2D histogram as a function of the fraction of surface points in that bin, ranging from blue (few points) through green to red (many points).

Fig. S6 Above: Views of the Hirshfeld surface (mapped with d_{norm}) of the N1'-containing (*i*-PrNHMe₂)⁺ cation in **1** at 313 K. Below: 2D fingerprint plots showing atomic contacts to the Hirshfeld surface of the N1'-containing (*i*-PrNHMe₂)⁺ cation in **1** at 313 K. For display details, see the figure caption of Fig. S5.

Fig. S7 Snapshots of NVT dynamic simulation for the (i-PrNHMe₂)⁺ cation of **1** at T_s of 173 K (a-f), and the overlapping maps of these snapshots (g), to display their dynamics. The specified H and C atoms are highlighted by balls to guide the eye.

Fig. S8 Snapshots of NVT dynamic simulation for the (i-PrNHMe₂)⁺ cation of **1** at T_s of 373 K (a-f), and the overlapping maps of these snapshots (g), to display their dynamics. The specified H and C atoms are highlighted by balls to guide the eye.

Fig. S9 The evolution of the torsion ϑ over simulation time from 500 to 2500 ps, at $T_{\rm S}$ of 373 K.

Fig. S10 Variations of the relative potential energy for **1** (based on DFT calculation) and the torsion $\vartheta_{(H-N-C-H)}$ of one selected (*i*-PrNHMe₂)⁺ ion during the MD simulation process (at T_s of 373 K), over the simulation time from 500 to 2500 ps (in an increasing step of 200 ps).

Fig. S11 The two-fold disordered states of the $(i-PrNHMe_2)^+$ ion in the crystal structure of 1 at 313K.

Fig. S12 Arrhenius plot of the relaxation time τ as a function of inverse temperature for a single relaxation process of **1**.

Fig. S13 Variable confined space for the (i-PrNHMe₂)⁺ cations at 173 K (a) and 313 K (b), respectively. Cd, N, C, and H atoms are shaded in cyan, blue, grey, and green, respectively.

Fig. S14 Temperature-dependent linewidth for the (*i*-PrNHMe₂)⁺ ion in 1.

Fig. S15 Simulated and experimental PXRD patterns for 1 at 293 K.