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Supporting Text: Determining the confidence radii for two-part weight functions 

In line with an earlier report,1 the confidence radii for the two-part weight functions, namely 

crad( )n   in eq 7 of the main text, can be assigned by adopting a Baysian analysis to the 

interpolation database. In brief, the Baysian analysis statistically estimates the confidence radii, 

each of which is the distance where the expansion error at a given data point does not exceed a 

tolerance value, tolE . The estimation is from the nearest M neighboring configurations, usually 

collected from other interpolation data points. Within a simple assumption to the relationship 

between the distance from the data point and its expansion error, the Baysian confidence radius 

for a given data point can be written as 
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where nei( )n
lZ  and nei( )n

lX  are the geometry of the l-th neighboring configuration for the n-th data 

point geometry, as represented in the Z-matrix internal coordinates and in the Cartesian coordinates, 

respectively. nei( )n
lU  is the quantum chemical potential energy obtained at the l-th neighboring 

configuration, nei( )n
lX   among the nearest M neighboring configurations. Here, the superscript 

“nei(n)” is used to emphasize the quantities are from the point belonging to the set of the 

neighboring configurations for the n-th data point. Although eq S1 is written for the case where 

interpolation is conducted on a single electronic state, extending for multistate cases is also 

straightforward.2 

One can notice that the confidence radii thus calculated are nothing but the averages of the 

estimated values from the neighboring configurations. Thus, the confidence radii will likely be 
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more reliable as more neighboring configurations are considered, and they can be simultaneously 

updated with additional sampling of the interpolation data points. However, our earlier study 

showed that when the interpolation is conducted for a large molecule, there sometimes should be 

additional sampling of neighboring configurations to render the confidence radii reliable. In this 

work, to avoid an additional computational cost associated with that, we modified eq S1 as follows: 
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With the target-customized weighting coordinate defined in the main text, the equation can be 

further modified as 
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One may wonder that directly using eq S2 or S3 in dynamics simulations may potentially be 

harmful as these equations systematically underestimate the confidence radii by taking the maxima 

rather than the averages. However, we experienced that sensitively assigning the radii through 

these equations was particularly useful during our “static” calculations toward analyzing the effect 

of the weighting coordinates. For the values of M and tolE , we choose M = 100, and tolE  = 1 

kJ/mol, similar with the earlier report.3 The obtained radii were used to calculate the corresponding 

contour maps with the two-part weighting functions shown in Figure 5c of the main text. 
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Supporting Tables 

 

Table S1. Z-matrix internal coordinates adopted toward the interpolation.a 

Bonds Angles Torsions 
C2-C1   
C3-C2 C3-C2-C1  
C4-C3 C4-C3-C2 C4-C3-C2-C1 
C5-C4 C5-C4-C3 C5-C4-C3-C2 
C6-C5 C6-C5-C4 C6-C5-C4-C3 
H7-C1 H7-C1-C2 H7-C1-C2-C6 
H8-C6 H8-C6-C5 H8-C6-C5-C1 
H9-C3 H9-C3-C2 H9-C3-C2-C4 
H10-C4 H10-C4-C5 H10-C4-C5-C3 
C11-C5 C11-C5-C4 C11-C5-C4-C6 
C12-C11 C12-C11-C5 C12-C11-C5-C4 
H13-C11 H13-C11-C12 H13-C11-C12-C5 
C14-C12 C14-C12-C11 C14-C12-C11-C5 
H15-C12 H15-C12-C11 H15-C12-C11-C14 
O16-C14 O16-C14-C12 O16-C14-C12-C11 
O17-C2 O17-C2-C3 O17-C2-C3-C1 
S18-C14 S18-C14-C12 S18-C14-C12-O16 
C19-S18 C19-S18-C14 C19-S18-C14-O16 
H20-C19 H20-C19-S18 H20-C19-S18-C14 
H21-C19 H21-C19-S18 H21-C19-S18-C14 
H22-C19 H22-C19-S18 H22-C19-S18-C14 

a Atom designations can be found in Figure 1 of the main text. 
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Table S2. RESP diabatic charges at the S0-optimized geometry. 

atoma diabatic atomic partial chargeb 
 P state Q state PQ coupling 

C1 −0.5179 −0.2995 0.0602 
C2 0.6994 0.8495 −0.0560 
C3 −0.5661 −0.4247 0.0243 
C4 −0.1132 −0.0028 −0.0761 
C5 −0.0891 0.1645 0.1267 
C6 −0.1764 −0.2069 −0.0649 
H7 0.1652 0.1266 −0.0048 
H8 0.1481 0.1334 0.0092 
H9 0.1742 0.1511 0.0000 
H10 0.1322 0.0986 0.0116 
C11 0.0756 0.0250 −0.0835 
C12 −0.4232 −1.0386 0.1047 
H13 0.0874 0.0934 −0.0094 
C14 0.8351 0.6803 −0.0512 
H15 0.2238 0.2908 −0.0128 
O16 −0.5802 −0.6552 0.0081 
O17 −0.8186 −0.6905 0.0104 
S18 −0.3927 −0.4343 0.0005 
C19 0.0119 0.0257 0.0067 
H20 0.0347 0.0300 −0.0007 
H21 0.0550 0.0535 −0.0022 
H22 0.0347 0.0299 −0.0007 

a Atom designations can be found in Figure 1 of the main text. 
b Diabatic state designations can be found in Figure 2b of the main text. 
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Table S3. Detailed simulation conditions of the restrained sampling for the IM database. 

Bin index Initial [α, β] Restrained angle a 
6 [70, 180] 

α 

7 [50, 180] 
8 [30, 180] 
9 [10, 180] 

10 [−10, 180] 
11 [−30, 180] 
12 [−50, 180] 
13 [−70, 180] 
14 [0, 250] 

β 
15 [0, 230] 
16 [0, 130] 
17 [0, 110] 
18 [0, 210] 

α, β 
19 [0, 190] 
20 [0, 170] 
21 [0, 150] 

a All the restraining centers were the same as the initial angle values. The restraining force constant 
was 200 kJ/mol/rad2, excepting the restraint on α from bin indexes 18 – 21, where the force 
constant was 100 kJ/mol/rad2 instead. 
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Table S4. Pearson’s correlation coefficients between the squared effective distance from the 

closest data point and the state-averaged interpolation error for all bond stretching coordinates.a 

Index Bondb Coefficient 
1 C1-C2 −0.0417 
2 C1-C6 −0.0017 
3 C1-H7 0.0253 
4 C2-C3 −0.0343 
5 C2-O17 0.3326 
6 C3-C4 0.1368 
7 C3-H9 0.0264 
8 C4-C5 0.0351 
9 C4-H10 0.0289 
10 C5-C6 0.0135 
11 C5-C11 0.3074 
12 C6-H8 0.0548 
13 C11-C12 0.2383 
14 C11-H13 0.0222 
15 C12-C14 0.1012 
16 C12-H15 −0.0011 
17 C14-O16 −0.0568 
18 C14-S18 −0.1096 
19 S18-C19 0.1341 
20 C19-H20 0.0594 
21 C19-H21 0.0406 
22 C19-H22 0.0630 

a The effective distance was calculated as in eq 9 of the main text without any tolerance parameter, 
and the state-averaged interpolation error was defined as the RMS value of the errors from both S0 
and S1 states. Each correlation coefficient was obtained with the test configurations. 
b Atom designations can be found in Figure 1 of the main text. 
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Table S5. Pearson’s correlation coefficients between the squared effective distance from the 

closest data point and the state-averaged interpolation error for all angle bending coordinates.a 

Index Angleb Coefficient Index Angleb Coefficient 
1 C1-C2-C3 0.2362 26 C14-C12-H15 −0.0713 
2 C1-C2-O17 0.0810 27 C14-S18-C19 0.2325 
3 C1-C6-C5 0.0272 28 O16-C14-S18 0.2454 
4 C1-C6-C8 −0.0088 29 S18-C19-H20 0.0834 
5 C2-C1-C6 0.0874 30 S18-C19-H21 −0.0429 
6 C2-C1-H7 0.0643 31 S18-C19-H22 0.0239 
7 C2-C3-C4 0.1990 32 H20-C19-H21 0.0119 
8 C2-C3-H9 0.0922 33 H20-C19-H22 0.0360 
9 C3-C2-O17 0.1600 34 H21-C19-H22 −0.0722 
10 C3-C4-C5 −0.0053    
11 C3-C4-H10 0.0625    
12 C4-C3-H9 −0.0366    
13 C4-C5-C6 0.1594    
14 C4-C5-C11 0.0934    
15 C5-C4-H10 0.0942    
16 C5-C6-H8 0.0721    
17 C5-C11-C12 0.0490    
18 C5-C11-H13 0.1095    
19 C6-C1-H7 0.0205    
20 C6-C5-C11 0.0900    
21 C11-C12-C14 −0.0066    
22 C11-C12-H15 0.0562    
23 C12-C11-H13 −0.0096    
24 C12-C14-O16 0.2134    
25 C12-C14-S18 0.0695    

a The effective distance was calculated as in eq 9 of the main text without any tolerance parameter, 
and the state-averaged interpolation error was defined as the RMS value of the errors from both S0 
and S1 states. Each correlation coefficient was obtained with the test configurations. 
b Atom designations can be found in Figure 1 of the main text. 
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Table S6. Pearson’s correlation coefficients between the squared effective distance from the 

closest data point and the state-averaged interpolation error for all proper dihedral coordinates.a 

Index Dihedral Angleb Coefficient Index Dihedral Angleb Coefficient 
1 C1-C2-C3-C4 0.0595 26 H7-C1-C6-H8 0.0416 
2 C1-C2-C3-H9 0.0800 27 H8-C6-C5-C11 0.0153 
3 C1-C6-C5-C4 0.1203 28 H9-C3-C2-O17 0.0643 
4 C1-C6-C5-C11 0.0425 29 H9-C3-C4-H10 0.0710 
5 C2-C1-C6-C5 0.0841 30 H10-C4-C5-C11 0.0125 
6 C2-C1-C6-H8 0.0095 31 C11-C12-C14-O16 0.0279 
7 C2-C3-C4-C5 0.2057 32 C11-C12-C14-S18 0.1322 
8 C2-C3-C4-H10 0.0316 33 C12-C14-S18-C19 0.1420 
9 C3-C4-C5-C6 0.2331 34 H13-C11-C12-C14 0.2962 
10 C3-C4-C5-C11 0.1383 35 H13-C11-C12-H15 0.3723 
11 C4-C3-C2-O17 0.0682 36 C14-S18-C19-H20 0.1427 
12 C4-C5-C6-H8 0.0627 37 C14-S18-C19-H21 0.1568 
13 C4-C5-C11-C12 −0.0810 38 C14-S18-C19-H22 0.0944 
14 C4-C5-C11-H13 0.2084 39 H15-C12-C14-O16 0.2133 
15 C5-C4-C3-H9 0.0904 40 H15-C12-C14-S18 0.1061 
16 C5-C11-C12-C14 0.1245 41 O16-C14-S18-S19 0.1605 
17 C5-C11-C12-H15 0.2780    
18 C6-C1-C2-C3 0.0883    
19 C6-C1-C2-O17 −0.0262    
20 C6-C5-C4-H10 0.1237    
21 C6-C5-C11-C12 0.0449    
22 C6-C5-C11-H13 0.2163    
23 H7-C1-C2-C3 0.0481    
24 H7-C1-C2-O17 0.0874    
25 H7-C1-C6-C5 0.0313    

a The effective distance was calculated as in eq 9 of the main text without any tolerance parameter, 
and the state-averaged interpolation error was defined as the RMS value of the errors from both S0 
and S1 states. Each correlation coefficient was obtained with the test configurations. 
b Atom designations can be found in Figure 1 of the main text. 
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Table S7. Pearson’s correlation coefficients between the squared effective distance from the 

closest data point and the state-averaged interpolation error for the selected improper dihedral 

coordinates.a 

Index Dihedral Angleb Coefficient 
1 C1-C3-C2-O17 0.0983 
2 C1-C5-C6-H8 −0.0034 
3 C2-C4-C3-H9 0.1179 
4 C3-C5-C4-H10 0.0390 
5 C4-C6-C5-H11 0.0472 
6 C5-C12-C11-H13 0.2367 
7 H7-C1-C6-C2 0.0584 
8 C12-O16-C14-S18 0.2310 
9 C14-C11-C12-H15 0.2163 

a The effective distance was calculated as in eq 9 of the main text without any tolerance parameter, 
and the state-averaged interpolation error was defined as the RMS value of the errors from both S0 
and S1 states. Each correlation coefficient was obtained with the test configurations. 
b Atom designations can be found in Figure 1 of the main text. 
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Table S8. RMS errors in interpolated energies (eV) for the hopping geometries from IM/MM 

NAMD simulations. 

Level of theory S0 state S1 state S0-S1 gap 
SA-CASSCF 0.074 0.098 0.056 
α-CASSCF 0.042 0.044 0.020 

MS-CASPT2a 0.131 0.146 0.033 
a In the case of the MS-CASPT2, the dual-interpolation scheme was adopted, with Hessians from 
α-CASSCF. 
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Supporting Figures 

 

 

Figure S1. Taylor expansions calculated around the S0-optimized geometry using different 

displacement function for improper torsions. The reference quantum chemical calculation results 

with SA2-CAS(4,3)SCF are also shown for comparison. 
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Figure S2. Assigned AMBER99SB bond atom types4 for the stabilizer function of the PYP 

chromophore. 
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Figure S3. Diabatic potential energy curves along the HOOP coordinate, obtained with (a) SA-

CASSCF, (b) α-CASSCF, and (c) MS-CASPT2 levels of theories. The initial geometry 

(corresponding to HOOP = 0 deg) was generated from the S0-optimized one by rigidly rotating the 

β torsional angle to 130 deg. Other details are the same as in Figure 3 of the main text. 
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Figure S4. Boys-localized active space orbitals in the HOOP-twisted geometry. The geometry was 

generated from the S0-optimized one by rigidly rotating β and HOOP torsional angles into 130 deg 

and 90 deg, respectively. The definition of β and the HOOP torsional angle can be found in Figure 

1 of the main text. 
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Figure S5. Contour plots of the interpolated (solid black) and the reference QM (dashed red) S0 

PES’s in kJ/mol around the Franck-Condon region, without using the target-customized weighting 

coordinate (left panels) and with using it (right panels). Other details are the same as in Figure 5 

of the main text. 
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