Contents

1	Con	nputed Structures and Energies	$\mathbf{S2}$
	1.1	Methods and keywords	S2
	1.2	Cartesian coordinates	S2
	1.3	Structures	S18
	1.4	Solvation energies	S22
	1.5	Fragment energies	S23
	1.6	Dissociation energies	S23
	1.7	LED analysis	S24
2	\mathbf{Exp}	erimental and Computed Spectra	S28
	2.1	Measurement details	S28
	2.2	Comparison to computations	S29
	2.3	Closed shell reference data	S30
Re	efere	nces	$\mathbf{S31}$

List of Tables

S1	Keywords used in quantum-chemical calculations	S2
S2	Coordinates for DTBN 1:1 water t	S3
S3	Coordinates for DTBN 1:1 water o	S4
S4	Coordinates for DTBN 1:1 water p	S5
S5	Coordinates for DTBN 1:1 methanol t	S6
S6	Coordinates for DTBN 1:1 methanol o	S7
S7	Coordinates for DTBN 1:1 methanol p	$\mathbf{S8}$
$\mathbf{S8}$	Coordinates for DTBN 1:1 t-butanol t	S9
S9	Coordinates for DTBN 1:1 t-butanol o	510
S10	Coordinates for DTBN 1:1 t-butanol p	511
S11	Coordinates for TEMPO 1:1 methanol p	512
S12	Coordinates for TEMPO 1:1 methanol o	313
S13	Coordinates for TEMPO 1:1 t-butanol p	514
S14	Coordinates for TEMPO 1:1 t-butanol o	315
S15	Coordinates for TEMPO 1:1 phenol p S	516
S16	Coordinates for TEMPO 1:1 phenol o	317
S17	B3LYP and CCSD(T) TZ energies	522
S18	Fragment energies	523
S19	Dissociation Energies	523
S20	Local energy decomposition for DTBN complexes	325
S21	Local energy decomposition for TEMPO complexes	326
S22	Local energy decomposition for TEMPO with phenol	327
S23	CCSD(T) energy without LD term	327
S24	Experimental details	528
S25	Experimental scaling factors	528
S26	Experimental and computed wavenumbers.	529
S27	Computed wavenumbers with DFT functionals	530
S28	Closed shell reference data	530

1 Computed Structures and Energies

1.1 Methods and keywords

The structures of monomers, 1:1 and 1:2 complexes of DTBN and TEMPO were obtained from manual starting structures computed at the unrestricted open-shell B3LYP-D3BJ/def2-TZVP level^[1-4] using ORCA 4.2.1^[5] and with the help of the CREST^[6, 7] program at GFN2-xTB level^[8, 9], as described in the main document.

Reoptimizations were then performed using different functionals (open-shell $B3LYP^{[1-3]}$, $B2PLYP^{[10]}$ and $TPSS^{[11]}$) with def2-TZVP and $QZVP^{[4]}$ basis sets, always including Grimme's three-body term dispersion correction $D3^{[12]}$ and Becke-Johnson (BJ) damping^{[13-16]}. These calculations were carried out with the ORCA^[5] software package.

Relaxed potential energy surface scans around the C-C-N-C, C-C-N-O, C-C^{\cdots}C-C dihedral angles of monomer and 1:1 structures, and C-N-O^{\cdots}O of 1:1 structures were obtained at UB3LYP/def2-TZVP level of theory using Gaussian16 Rev A.03^[17].

Further single point calculations were performed at the B3LYP geometries with the DPLNO-CCSD(T)^[18-21] method using aug-cc-pVTZ^[22], and matching auxiliary basis sets, in the unrestricted open-shell^[21] variant, with the ORCA software package.^[5] Local energy decomposition (LED) was also carried out.^[23, 24] For this purpose, two fragments were defined in the input file. The atoms which define DTBN were assigned to fragment (1), and the atoms of solvents were assigned to fragment (2) (see Tables S2 - S16).

When the basic variable that commands the type of wavefunction to be computed (HFTyp in the %scf block) is not specified, the program checks the multiplicity given in the input file, and performs the calculation based on it.^[5]. For open-shell systems with multiplicity = 2 (DTBN and DTBN complexes), UKS/UHF were employed. UHF (Unrestricted Hartree-Fock) is replaced by UKS (Unrestricted Kohn-Sham) in DFT computations.^[5] By program default, quasi-restricted orbitals (QRO^[25]) were used to avoid spin contamination^[26].

Table S1: Methods and keywords applied for open-shell quantum chemical calculations of DTBN and TEMPO monomers and solvates using $ORCA^{[5]}$ and Gaussian $16^{[17]}$ software packages.

Method	Program	Basis set	Keywords
B3LYP-D3(BJ)	GAUSSIAN 16	def2-TZVP	<pre># opt ub3lyp def2tzvp empiricaldispersion=gd3bj</pre>
		Rev.A.03	int=ultrafine freq (multiplicity = 2)
B3LYP-D3(BJ)	ORCA 4.2.1	def2-TZVP	B3LYP D3BJ ABC def2-TZVP GRID5 NOFINALGRID VERYTIGHTSCF TIGHTOPT FREQ (multiplicity = 2)
B3LYP-D3(BJ)	ORCA 4.2.1	def2-QZVP	B3LYP D3BJ ABC def2-QZVP GRID5 NOFINALGRID VERYTIGHTSCF TIGHTOPT FREQ (multiplicity = 2)
B2PLYP-D3(BJ)	ORCA 4.2.1	def2-TZVP	B2PLYP D3 def2-TZVP GRID5 NOFINALGRID VERYTIGHTSCF TIGHTOPT NumFreq (multiplicity = 2)
TPSS-D3(BJ)	ORCA 4.2.1	def2-TZVP	TPSS D3BJ def2-TZVP ABC GRID5 NOFINALGRID VERYTIGHTSCF TIGHTOPT NumFreq (multiplicity = 2)
DLPNO-CCSD(T)	ORCA 4.2.1	aug-cc-pVTZ	DLPNO-CCSD(T) TightPNO aug-cc-pVTZ aug-cc-pVTZ/C TightSCF LED (multiplicity = 2)

1.2 Cartesian coordinates

Selected cartesian coordinates (in Å) of DTBN and TEMPO solvates (shown in figure 2 of the main document) are given in the Tables S2, S3 S4, S5,S6 S7, S8, S9, S10, S11, S12, S13, S14, S15, S16

Atom	Fragment	X	Y	Z
0	(1)	-0.53247525809028	1.19645606619857	-0.90457129344892
C	(1)	-1.17576202268707	-0.89664198471922	-0.09311010966260
C	(1)	-2.14486224728637	-0.95704593113227	-1.28101551191418
C	(1)	-0.67869075038164	-2.31331963542261	0.19066164407326
C	(1)	-1.89745784853815	-0.33776187519741	1.14242503548568
H	(1)	-2.56049068822159	0.02407800133320	-1.49374393424113
H	(1)	-1.63413827427472	-1.31871961188057	-2.17519464178305
H	(1)	-2.95812770812340	-1.64515616064096	-1.04601893406426
H	(1)	0.01749153744213	-2.36323913495688	1.02454997971430
H	(1)	-1.54608863195043	-2.91847819578340	0.45760681080145
H	(1)	-0.21865647612903	-2.76610407036673	-0.68622529386096
H	(1)	-1.25102690652534	-0.34054933635187	2.01919896766279
H	(1)	-2.22476053303254	0.68453307139368	0.96336092293387
H	(1)	-2.77269103522197	-0.95218008536047	1.36111117554009
C	(1)	1.37088305639188	0.03214083148208	-0.07534184370153
C	(1)	2.07111756309778	-1.19077403402748	-0.68659498819283
C	(1)	2.04252078139191	1.28953979874648	-0.63668825793842
C	(1)	1.50119442455090	0.04744226052165	1.45470409506753
H	(1)	1.80626620944141	-2.12462258153796	-0.20120163746219
H	(1)	1.84509968738603	-1.27153322608974	-1.75085778466513
H	(1)	3.14933029608854	-1.06279759239848	-0.58116961429901
H	(1)	1.92489458243808	1.35166631280124	-1.71777863864890
H	(1)	1.63831197691474	2.19451173370708	-0.19161884447584
H	(1)	3.10668388679081	1.23377898623048	-0.40322773776527
H	(1)	1.08220000746342	-0.84450401224032	1.91707207236703
H	(1)	2.55974065798183	0.08892176189567	1.71918283851288
H	(1)	1.01011721260973	0.92723050619767	1.87006370720683
N	(1)	-0.08573669278700	0.07504896249126	-0.47702022110060
0	(2)	-0.50386228985968	2.98602277913587	1.25602216630103
H	(2)	-0.69957187065074	3.89874240123692	1.02339561483983
H	(2)	-0.57898264622925	2.48387399473456	0.42349425671825

Table S2: Cartesian coordinates of 1:1 DTBN t^{...}HOH computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	Х	Y	Z
0	(1)	0.41567117298258	-1.42020424987360	-0.63144026970744
C	(1)	1.27099120622909	0.69388754340038	-0.09251935584857
C	(1)	1.65663664841111	1.15570184219707	-1.50603247152449
C	(1)	0.99857434254054	1.89837954590040	0.80977205700574
C	(1)	2.42868025200800	-0.10281212938397	0.52509783097452
H	(1)	0.89690272300582	1.80545642800899	-1.93964362125725
H	(1)	2.59647771386852	1.70970362994228	-1.46897239308447
H	(1)	1.79037257770667	0.29006815513801	-2.15441302234975
H	(1)	0.79899922873605	1.59012887567704	1.83486176531354
H	(1)	1.89762259612261	2.51618209506579	0.81762665677259
H	(1)	0.18080834109913	2.52499751650549	0.46367392483009
H	(1)	3.27124760982164	0.57028302003468	0.69103842759261
H	(1)	2.13010101893747	-0.53356572998329	1.48141093359179
H	(1)	2.74583307380200	-0.90952356449016	-0.13012373554562
C	(1)	-1.36582361803467	0.08348713703955	-0.13046518624085
C	(1)	-2.15217014194207	-1.16778352027193	-0.53249948111866
C	(1)	-1.75018493384255	0.44298628105332	1.31351444894082
C	(1)	-1.72065649262555	1.21156759076890	-1.10942857230714
H	(1)	-1.97068598956774	-1.98849599656516	0.15828827110536
H	(1)	-3.21416166595455	-0.91884771756881	-0.50498264740159
H	(1)	-1.89364828044040	-1.49785717893917	-1.53630796097325
H	(1)	-1.37511355892891	-0.31640782367521	2.00008113607944
H	(1)	-1.37956220113729	1.41646765046688	1.62150272755114
H	(1)	-2.83874122757579	0.46606342461191	1.39098322428124
H	(1)	-1.22149403857735	2.14970725759504	-0.87865028789385
H	(1)	-1.46785879722272	0.92645745427706	-2.13131093356351
H	(1)	-2.79595338138628	1.39261739086114	-1.06443686423816
N	(1)	0.10387169989351	-0.24995961449702	-0.21418401506929
0	(2)	0.08467343846170	-2.61644659870416	1.90097009519162
H	(2)	0.26682561131019	-2.39345277334389	0.97044375818955
H	(2)	0.37441507229918	-3.52708594124760	2.01045556070383

 $\textbf{Table S3:} Cartesian coordinates of 1:1 DTBN o \\ \cdots HOH computed at \\ UB3LYP-D3(BJ)/def2-TZVP level of theory.$

Atom	Fragment	X	Y	Z
0	(1)	-0.61928012751018	-1.21575037302829	-0.50869349528988
C	(1)	-0.64221298547621	1.08342186823928	-0.02318433829677
C	(1)	0.23426778262754	2.33587993072099	-0.06306947111475
C	(1)	-1.69805829851507	1.21233868563791	-1.13032097224564
C	(1)	-1.32931536087169	0.96902587604286	1.34668671548680
H	(1)	1.01918670307701	2.33745942063871	0.68958508877685
H	(1)	0.68139660303907	2.48572736003073	-1.04472453988908
H	(1)	-0.40869059217051	3.19278485812956	0.14109802363973
H	(1)	-2.42552418100982	0.40673364825497	-1.09432236618861
H	(1)	-2.22718530663620	2.15804113494468	-1.00407460266028
H	(1)	-1.22223761197151	1.21309764228756	-2.11249574651523
H	(1)	-1.93686206802855	0.06785872075287	1.40354139965014
H	(1)	-0.60173770785933	0.95893597376815	2.15814019436752
H	(1)	-1.98602351505550	1.82839905653595	1.49316668965403
C	(1)	1.56953873175181	-0.47798763715863	0.01862820477315
C	(1)	2.49657771000485	0.36521548125527	-0.87012532508654
C	(1)	1.85900750838940	-0.24119963284883	1.50781379592764
C	(1)	1.82777489365808	-1.95405615790104	-0.29795405856419
H	(1)	2.18877519620636	0.29755013795681	-1.91439148895706
H	(1)	2.52988604323567	1.41159664213980	-0.58364939872693
H	(1)	3.51106343638897	-0.02881231668547	-0.79188916594863
H	(1)	1.73870104569326	0.79983529369778	1.79945199665153
H	(1)	1.20155909345652	-0.85281490730181	2.12624713091842
H	(1)	2.89071057647449	-0.52713250604280	1.72110280400814
H	(1)	1.61915320923403	-2.17743925855902	-1.34311227677135
H	(1)	2.87951740740857	-2.16401717845909	-0.09783997790832
H	(1)	1.21422915687414	-2.60961996340360	0.31479507799697
N	(1)	0.11841493202290	-0.19303276492788	-0.28830079422812
0	(2)	-3.31549089177392	-1.66883391687779	0.18042092361442
H	(2)	-3.54371245506324	-2.57621185361810	-0.04241049727808
H	(2)	-2.38697092760094	-1.55963726422153	-0.09489652979590

 $\label{eq:Table S4: Cartesian coordinates of 1:1 DTBN p^{\dots} HOH \ computed \ at \ UB3LYP-D3(BJ)/def2-TZVP \ level \ of \ theory.$

Atom	Fragment	Х	Y	Z
0	(1)	0.59295641625733	0.45259467377100	-1.17254945084802
C	(1)	-1.25939812028856	1.21531154036220	0.02804962794556
C	(1)	-2.60406851470312	0.79056922962370	0.61613940686717
C	(1)	-0.43294652440404	1.95508110163992	1.09119408244934
C	(1)	-1.52848379625993	2.14486123994194	-1.16243322093635
H	(1)	-2.50695704866786	0.12955561266402	1.47430421089260
H	(1)	-3.11209578886269	1.69253818748304	0.96005124790766
H	(1)	-3.24175942616305	0.31695726186284	-0.12866916900224
H	(1)	0.54276699175699	2.22957477261738	0.69468958219976
H	(1)	-0.95682526682350	2.86504270761079	1.38909131525734
H	(1)	-0.28177303151046	1.34271295061698	1.97927949926411
H	(1)	-2.12348683682872	2.99525822081235	-0.82627805760658
H	(1)	-0.59817287314189	2.50943781805941	-1.58917164704831
H	(1)	-2.08526702595404	1.62064070126930	-1.94116025213401
C	(1)	-0.43058056546684	-1.36455355022494	-0.02716525539332
C	(1)	-1.77711019145183	-2.03888012252051	-0.32891023814053
C	(1)	0.65550553016724	-2.11034643349442	-0.80885946676909
C	(1)	-0.09078852842463	-1.43024828133611	1.46901474406204
H	(1)	-2.07530178936691	-1.85656689169052	-1.36239516441855
H	(1)	-1.66442889390115	-3.11583628122560	-0.19663506934326
H	(1)	-2.57713542278169	-1.71313118754613	0.32799741616268
H	(1)	0.49017762581796	-2.03975128957571	-1.88307196454424
H	(1)	1.64628919272562	-1.72490149170221	-0.58609029763791
H	(1)	0.61887571711050	-3.16078450598833	-0.51711604819005
H	(1)	0.87423026424142	-0.96056040154368	1.66006401030649
H	(1)	-0.84682042307877	-0.95195093385455	2.08915732804772
H	(1)	-0.02955957530095	-2.47728361590685	1.77261404828706
N	(1)	-0.42853607664913	0.07074548874193	-0.50084739665895
0	(2)	2.80156650507555	0.46383189913251	0.53689475621957
H	(2)	2.10706294691201	0.51556203075016	-0.14394188612298
	(2)	4.05443527099546	0.31815434862798	-0.10507974902617
H	(2)	4.81685875604908	0.25397190630645	0.67211903167673
H	(2)	4.10514045288768	-0.59466411328237	-0.71191899119248
H	(2)	4.29019005003292	1.17408740799802	-0.74849698253280

 $\label{eq:table_star} \textbf{Table S5:} \ Cartesian \ coordinates \ of 1:1 \ DTBN \ t^{...} HOCH_3 \ computed \ at \ UB3LYP-D3(BJ)/def2-TZVP \ level \ of \ theory.$

Atom	Fragment	X	Y	Z
0	(1)	0.65472430631493	-0.28446656600048	-1.20770983029700
C	(1)	-0.51417298928488	1.44461250082922	-0.14710283968077
C	(1)	-1.16122223505076	2.04877708883339	-1.40234581121459
C	(1)	-1.35987002918191	1.74955441900046	1.08976003423531
C	(1)	0.87467803278187	2.06137749281800	0.07082889883454
H	(1)	-1.18731380548181	3.13671423819627	-1.31759304853558
H	(1)	-0.57791453150657	1.78293458310764	-2.28337474358878
H	(1)	-2.18293225396096	1.69412706310076	-1.53761587666924
H	(1)	-0.87641306924180	1.39926735518558	2.00020966552707
H	(1)	-1.45874019972258	2.83348368439677	1.16302044567430
Н	(1)	-2.36451076851158	1.33774505079756	1.04175242818383
H	(1)	1.49482015441443	1.95616423383947	-0.81511417068881
H	(1)	0.76087259259568	3.12194192852306	0.29987434763648
H	(1)	1.37923814959483	1.57575210290419	0.90695947261307
C	(1)	-1.20844755577555	-1.16971082191402	-0.01266147016959
C	(1)	-0.64618049301599	-2.44460734592659	-0.64859927151904
C	(1)	-1.20800036342548	-1.35948765234288	1.51231854894331
C	(1)	-2.62570120291515	-0.94153911320446	-0.55687867789138
H	(1)	0.34503272894612	-2.67758452828301	-0.26453175820384
H	(1)	-1.31701194145429	-3.26748077844761	-0.39703226970350
H	(1)	-0.58420074133728	-2.35906830933071	-1.73111456154069
H	(1)	-0.18381330351119	-1.37376719795344	1.88633622741415
H	(1)	-1.76827843003358	-0.59061627009472	2.03642304396828
H	(1)	-1.67023825074323	-2.31997955444737	1.74661508454504
H	(1)	-3.10851388621109	-0.06467584331658	-0.13175366558151
H	(1)	-2.60640539531534	-0.83504319941508	-1.64213088191287
H	(1)	-3.24279147418390	-1.80769229238972	-0.31174842453996
N	(1)	-0.30474422627388	-0.02507915180961	-0.39956548043520
0	(2)	2.39943276317495	-1.20047041616519	0.79382770711224
H	(2)	1.93274796834127	-0.92597314895169	-0.01434782236912
C	(2)	3.75289743566033	-0.79908123385943	0.69696859680887
H	(2)	3.85489294268292	0.28928352342407	0.60246997336727
H	(2)	4.25515415785049	-1.11097924543364	1.61345204568265
H	(2)	4.26341591378098	-1.26940259567022	-0.15183591600495

 $\textbf{Table S6: } Cartesian \ coordinates \ of \ 1:1 \ DTBN \ o^{\cdots}HOCH_3 \ computed \ at \ UB3LYP-D3(BJ)/def2-TZVP \ level \ of \ theory.$

Atom	Fragment	X	Y	Ζ
0	(1)	-0.69173486555471	-0.74391979025288	-0.48403700654533
C	(1)	0.23808521088093	1.36626417606461	-0.02932249939500
C	(1)	1.55025679129497	2.14773874453083	-0.10693941589599
C	(1)	-0.69580814692248	1.90382330538131	-1.12302052624978
C	(1)	-0.40632321106480	1.56114241582467	1.35242610686462
H	(1)	2.28161802558865	1.83778039038848	0.63567008286769
H	(1)	1.99956110806031	2.08576512058199	-1.09706614055631
H	(1)	1.32014317120704	3.19606046282780	0.08643779482942
H	(1)	-1.68956654625616	1.47040656021717	-1.05803052453317
H	(1)	-0.78534046193181	2.98511560367464	-1.00922784254257
H	(1)	-0.28518211649336	1.69467561390505	-2.11222284848535
H	(1)	-1.33027879692198	0.99168459669882	1.43604209704263
H	(1)	0.26932989511768	1.26153839569291	2.15326558631497
H	(1)	-0.64736789932821	2.61650782424119	1.49172615531562
C	(1)	1.61266582935118	-0.96617841313443	0.01945523712767
C	(1)	2.78994989786445	-0.59211012911873	-0.89381190617824
C	(1)	1.99809330949948	-0.84881154248693	1.50100945550635
C	(1)	1.23506577916179	-2.42187902475155	-0.27055118165566
H	(1)	2.46442665499820	-0.54121089903042	-1.93362398348894
H	(1)	3.25615969709751	0.35133333937379	-0.62797379989973
H	(1)	3.55330222945296	-1.36799434424357	-0.81756064852906
H	(1)	2.32188750236511	0.15329224159197	1.77361749923535
H	(1)	1.15742913054391	-1.12672193595817	2.13721823434768
H	(1)	2.82384658891337	-1.53140439744358	1.71017005676143
H	(1)	0.93780942802977	-2.55475885399078	-1.30958531612200
H	(1)	2.10981714667952	-3.04343068081874	-0.07382288264848
H	(1)	0.41488576867396	-2.75756260297765	0.35897831571351
N	(1)	0.40318451755457	-0.11273439528594	-0.28038333749636
0	(2)	-3.30816099601599	-0.06971379393214	0.25640481492098
H	(2)	-2.41177081064704	-0.32309458666400	-0.02619504954427
C	(2)	-4.19514801247697	-1.12936121685343	-0.04520537399833
H	(2)	-3.92874399591930	-2.05436859442760	0.48115162783215
H	(2)	-5.19217499586156	-0.82783909693414	0.27903331747997
H	(2)	-4.23429582694099	-1.34324849269052	-1.12044509839548

Table S7: Cartesian coordinates of 1:1 DTBN $p^{...}HOCH_3$ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	X	Y	Z
0	(1)	0.09533782814065	-0.26727294601942	-1.15326414182886
C	(1)	1.64179570573856	-1.35173612276303	0.29360903326476
C	(1)	3.06558325282587	-1.83912262412881	-0.01385764110002
C	(1)	1.49580477809231	-0.93305575403756	1.76396861172739
C	(1)	0.67731405113892	-2.50910726488072	0.01338746725314
H	(1)	3.21511957378967	-2.80418572603763	0.47206720331616
H	(1)	3.20098449936055	-1.97957814730698	-1.08728472477612
H	(1)	3.83753544322510	-1.16948593222876	0.35135171509304
H	(1)	0.47841254795251	-0.59863725118865	1.96684929987452
H	(1)	1.70630582236684	-1.79487407763610	2.40047388132152
H	(1)	2.19089939813664	-0.14221389728199	2.04106443297798
H	(1)	-0.34488564609934	-2.26052837658191	0.28447803645372
H	(1)	0.69741678536213	-2.79442957347752	-1.03772973217350
H	(1)	0.99524416069698	-3.36306727900703	0.61312116869577
C	(1)	1.86699566005448	1.17300328377707	-0.67030437980650
C	(1)	3.32587755866194	1.23115504784148	-0.22077677569851
C	(1)	1.79665339801955	1.62155654742644	-2.13575971867866
C	(1)	1.01437106526076	2.10575997249473	0.20298463363363
H	(1)	3.65305513438753	2.26871132754138	-0.30030768616798
H	(1)	3.46621911086553	0.92796694414396	0.81423519216737
H	(1)	3.97317618979250	0.63233606874809	-0.85927700694177
H	(1)	2.21244871382628	2.62621767538435	-2.22514414617004
H	(1)	2.37701765751383	0.95033223371007	-2.77127625675837
H	(1)	0.76939706659280	1.63047312473915	-2.49000887260068
H	(1)	1.36448780170101	3.13296763421554	0.08666754767957
H	(1)	-0.03020792860552	2.05722438158103	-0.09672356689412
H	(1)	1.08101334640533	1.83914798875469	1.25711802665357
N	(1)	1.25594213847933	-0.20647940239933	-0.61442828843673
0	(2)	-1.82648884606674	-0.12911451915880	0.88886052299399
H	(2)	-1.24112741848644	-0.19593779041408	0.11266795770185
C	(2)	-3.15103393134671	0.16413081742132	0.42737279255126
C	(2)	-4.01242821693803	0.25618068275089	1.68108114183619
H	(2)	-5.04986995945547	0.47910219574339	1.42511469333086
H	(2)	-3.98334567047379	-0.68779147360342	2.22769777221029
H	(2)	-3.63833901327243	1.04347836989296	2.33763052688579
C	(2)	-3.14530663696555	1.49640689006972	-0.32727320073201
H	(2)	-2.49180616803891	1.43561659993603	-1.20064227040735
H	(2)	-4.14784635397941	1.76143978122319	-0.67070769828784
H	(2)	-2.77945440884687	2.29372030981071	0.32205364201966
C	(2)	-3.63467759735426	-0.96615457944922	-0.48461455290495
H	(2)	-2.98488210766122	-1.05486643929531	-1.35827933535699
H	(2)	-3.61677971165594	-1.91550774213174	0.05323791281019
H	(2)	-4.65333907314095	-0.78420095817815	-0.83485321673127

Table S8: Cartesian coordinates of 1:1 DTBN t^{...}HOC(CH₃)₃ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	X	Y	Z
0	(1)	0.39877071573462	-0.65971193037477	-1.03983675660335
C	(1)	1.73577097509368	-1.24404445065739	0.79280577227533
C	(1)	2.75593806808957	-2.11400414547978	0.04327452915641
C	(1)	2.35983875697780	-0.65865875864647	2.06014553814647
C	(1)	0.53237517774646	-2.09932133971434	1.21300998293076
H	(1)	2.31860409319208	-2.47961793518184	-0.88541162207030
Н	(1)	3.66384051341123	-1.55850319851701	-0.19090019754925
Н	(1)	3.03218151240008	-2.97238315066144	0.65841948152244
H	(1)	1.62771279311372	-0.10440321068028	2.64523814931538
H	(1)	2.71107737490951	-1.49145790461566	2.67095020155546
H	(1)	3.21633184423867	-0.01822999240331	1.86622888081273
H	(1)	-0.24748817926489	-1.47452243774725	1.64933813105215
H	(1)	0.10987547855622	-2.62943787577106	0.36398356161190
H	(1)	0.85800388930781	-2.82681896755823	1.95799874361676
C	(1)	1.72505497025621	1.20336906945413	-0.36730746091913
C	(1)	1.00612018227583	1.78962664020260	-1.58597674912153
C	(1)	1.37876925842081	2.07339712137842	0.85130800375220
C	(1)	3.23368078708767	1.19882712578583	-0.65101392747202
H	(1)	-0.06710243431050	1.85509489193929	-1.41942889658374
H	(1)	1.39362114528186	2.79617866305690	-1.75066422751995
H	(1)	1.18015632574803	1.19453634387837	-2.47961459407710
H	(1)	0.32529734050715	1.95668867087755	1.10732251816771
H	(1)	1.98482348582567	1.84371929605967	1.72281438271902
H	(1)	1.55375368587568	3.12000014167114	0.59573477535505
H	(1)	3.45552697838645	0.59863845878710	-1.53415963954752
H	(1)	3.56072475334755	2.22179017726727	-0.84516558044130
H	(1)	3.82191912146735	0.81964733450781	0.18130843521605
N	(1)	1.22063007045290	-0.20508551372928	-0.16837861770335
0	(2)	-1.86099682228902	0.50056703931006	0.21112167949016
H	(2)	-1.18238650194394	0.05159335039160	-0.32248057497947
C	(2)	-3.14832660555503	0.08817186415333	-0.26512842373109
C	(2)	-3.26420550524192	-1.43480240875942	-0.16445533105164
H	(2)	-2.50390815966042	-1.91539768837243	-0.78432811275385
H	(2)	-3.11672043815665	-1.75554588482996	0.86809295738675
H	(2)	-4.24503821750929	-1.77993670030623	-0.49920834357994
C	(2)	-4.16232368327669	0.77123747373408	0.64447825239885
H	(2)	-4.00954856258480	0.46033054870506	1.67926837582719
H	(2)	-4.04506467132493	1.85488266900448	0.59171431967302
H	(2)	-5.18216285693261	0.51634910325039	0.35061746809229
C	(2)	-3.32454160965509	0.54487728416532	-1.71578053837874
H	(2)	-2.56671176869190	0.08533653144558	-2.35449284232163
H	(2)	-4.30826514315361	0.26769246094647	-2.10160305721310
H	(2)	-3.21797813815329	1.62889123403369	-1.78309864645611

Table S9: Cartesian coordinates of 1:1 DTBN o^{\cdots}HOC(CH₃)₃ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	Х	Y	Z
0	(1)	0.01333058138695	0.03474422447572	1.01463699623354
C	(1)	1.58204840212531	-1.33219827167279	-0.08174972377413
C	(1)	3.08976748633624	-1.49503874902610	-0.27787421075831
C	(1)	1.10896856551371	-2.42892962744831	0.88195142742796
C	(1)	0.85650914665206	-1.47926042716126	-1.42852157333683
H	(1)	3.62695474062893	-1.45591292071990	0.66883927103175
H	(1)	3.26195617330969	-2.47895279915435	-0.71563462879121
H	(1)	3.51637349141401	-0.76226994261945	-0.95872293933124
H	(1)	1.41584453506274	-3.39940381180152	0.48959332193341
H	(1)	1.56023672237468	-2.29567318052873	1.86639338355866
H	(1)	0.02865515103362	-2.42784882141231	0.99401599350215
H	(1)	1.03737231378417	-2.48005527608674	-1.82530107180655
H	(1)	-0.21772341330619	-1.35433553026798	-1.30546432211354
H	(1)	1.21764631231541	-0.75738101290892	-2.16018607356698
C	(1)	1.90479083594032	1.31604783981448	0.37731401705917
C	(1)	2.05899904668953	1.67019813299583	-1.10846696844147
C	(1)	1.03573887079415	2.38679892987861	1.04332035137456
C	(1)	3.26648037508605	1.30183435006447	1.08913313033181
H	(1)	1.08626183677050	1.69579313000527	-1.60022223255903
H	(1)	2.50824992063705	2.66143464095301	-1.19260028996265
H	(1)	2.69935160566017	0.97244574303039	-1.64360129120858
H	(1)	0.05836234010576	2.46245548070977	0.57335949346993
H	(1)	0.88459825769821	2.17473676039393	2.10027810225193
H	(1)	1.54734213932119	3.34547867628134	0.94694843466181
H	(1)	3.16099747496996	0.91899877494400	2.10501037465755
H	(1)	4.01432670731410	0.71086534380799	0.56976110740841
H	(1)	3.64158787949573	2.32456431460812	1.15141617756639
N	(1)	1.20033898631217	-0.01013544740140	0.53792231547482
0	(2)	-2.34795709123579	-1.09597294065493	-0.04487217286288
H	(2)	-1.55146018734285	-0.75867281161624	0.40134931344398
C	(2)	-3.17038967508917	0.02194104370515	-0.39817381846649
C	(2)	-2.43164321834285	0.90672160077945	-1.40810519691785
H	(2)	-3.04992220695029	1.75076453072050	-1.72251921688036
H	(2)	-1.51579683117240	1.30149600095166	-0.96389543568871
H	(2)	-2.16327063388953	0.32537802173444	-2.29199399702028
C	(2)	-4.42553690939176	-0.57444517964715	-1.02425986932878
H	(2)	-5.11977325832756	0.21034087017851	-1.33064333581247
H	(2)	-4.16250077351284	-1.16905572802261	-1.90076294668478
H	(2)	-4.92840345057801	-1.22602447478616	-0.30807624700394
C	(2)	-3.51585231100999	0.82305247399523	0.85953989646855
H	(2)	-4.02520417013327	0.18367957753493	1.58233485733546
H	(2)	-2.60637528663952	1.20969119697456	1.32475684538968
H	(2)	-4.16629048181046	1.66864529439948	0.62363275173555

Table S10: Cartesian coordinates of 1:1 DTBN $p^{...}HOC(CH_3)_3$ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	X	Y	Z
С	(1)	2.63417702252661	-0.53637455452458	0.00335068213640
C	(1)	2.63941524995298	0.80020812981734	-0.72323995183042
C	(1)	1.69579587861952	1.75535067349238	-0.00763318754117
H	(1)	3.31579977586428	-1.24716131627998	-0.46923393690497
H	(1)	2.34713919924590	0.67594217955717	-1.76879194511927
H	(1)	2.05386986853127	1.89956078083835	1.01655892092492
C	(1)	0.24292437242723	1.26179938673632	0.04505467985633
C	(1)	-0.44640171797841	1.41318699152796	-1.32047747326180
H	(1)	-0.52655025034288	2.47394988988299	-1.56480833615659
H	(1)	-1.45240444938479	0.99740555038801	-1.28730383586998
H	(1)	0.11229205137596	0.92617952313286	-2.11835461752705
C	(1)	-0.52243193188837	2.06807056990863	1.09747701426414
H	(1)	-1.58464166456804	1.83739078533594	1.09529474127600
H	(1)	-0.40326486482424	3.13081592592589	0.87935070701300
H	(1)	-0.12346847366705	1.87354813472080	2.09391419143063
C	(1)	1.24806459660804	-1.19105281582991	0.07223451858271
C	(1)	0.85294765527942	-1.80977111487524	-1.27796886750677
H	(1)	-0.17957574128110	-2.15528798239722	-1.23800428142133
H	(1)	1.49802947674712	-2.66397837174012	-1.49053980524766
H	(1)	0.94899674378340	-1.10151328518465	-2.09934640530115
C	(1)	1.25372930394826	-2.27937664100149	1.14767678981752
H	(1)	1.43781113547920	-1.84600546729595	2.13158422028526
H	(1)	2.05007240994173	-2.99269699357371	0.92834944858909
H	(1)	0.30405026944399	-2.80797553794661	1.17759604842677
H	(1)	3.65049105580423	1.21334589129470	-0.73325653590211
H	(1)	2.99806775973527	-0.38060199400246	1.02359357360353
H	(1)	1.69459213235675	2.73878746604695	-0.48234630733765
N	(1)	0.21604342811710	-0.17770549250928	0.45955148889221
0	(1)	-0.91379021226543	-0.65731381170775	0.81691959997269
0	(2)	-3.45023426453146	0.29836622009037	0.11975244457892
H	(2)	-2.58990169595232	-0.02704277510781	0.43898452380280
C	(2)	-4.30753755892246	-0.80988901286854	-0.07378877014037
H	(2)	-3.91562161224167	-1.51177157237403	-0.82067274795168
H	(2)	-4.48574217467319	-1.36169624911689	0.85727511394804
H	(2)	-5.26450277326690	-0.42864311036042	-0.43269170238096

Table S11: Cartesian coordinates of 1:1 TEMPO $p^{...}HOCH_3$ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	X	Y	Z
С	(1)	-1.65244393081233	-0.86186207120621	1.25215890579359
C	(1)	-2.34515508078859	0.49291272226027	1.27876206908258
C	(1)	-1.29751251397819	1.58849706020882	1.14443577468403
H	(1)	-0.96577271677916	-0.91997222618797	2.10190491641384
H	(1)	-2.88912380933260	0.61268891543732	2.21833440935602
H	(1)	-1.75447756136057	2.57977219993681	1.18486189978117
C	(1)	-0.48087545662921	1.50113624748008	-0.15165283193423
C	(1)	0.78401238836536	2.35120864482099	-0.01355001442136
H	(1)	1.34402522897513	2.37770459018672	-0.94548524758456
H	(1)	1.43480525440669	1.95406829627272	0.76591640425218
H	(1)	0.49804482406746	3.36996570576816	0.25394555994691
C	(1)	-1.29500815209955	1.98339625342727	-1.36271061134124
H	(1)	-0.73913858644442	1.79235725738937	-2.28020525177323
H	(1)	-1.47054964366299	3.05731994585446	-1.27960751759098
H	(1)	-2.26233297831737	1.48782622843192	-1.43326964117135
C	(1)	-0.85772163083392	-1.12046208247165	-0.03497342249933
C	(1)	0.12070785507213	-2.27425937745490	0.19692244050098
H	(1)	0.86927173927380	-1.99788641189387	0.93979218905508
H	(1)	0.63282135691602	-2.54531894144132	-0.72371143693525
H	(1)	-0.43329077032622	-3.14190546458984	0.55930601090921
C	(1)	-1.78573105322120	-1.46241407131589	-1.21093120310380
H	(1)	-2.25249597162858	-2.43345822734707	-1.03666852245940
H	(1)	-1.20749266107756	-1.51547134751757	-2.13296490193663
H	(1)	-2.57770395609669	-0.72601953222625	-1.34057678231343
H	(1)	-3.08932549290116	0.56566563202452	0.48168149249330
H	(1)	-2.37096719266269	-1.67612183892023	1.36977496036060
H	(1)	-0.61046276188341	1.52186378573738	1.99323550188119
N	(1)	-0.05315184418359	0.08825813516639	-0.39238946096369
0	(1)	0.86471227074692	-0.08329687871178	-1.26624218804476
0	(1)	3.07938023259275	-0.33745365871799	0.47444746058024
H	(1)	2.42113963362840	-0.23086849129969	-0.23280130430193
C	(1)	3.96542074895435	-1.37847207006700	0.11143598927542
H	(1)	4.50564605444922	-1.15742127846793	-0.81700093233547
H	(1)	4.69605645210596	-1.48360212671264	0.91451384816839
H	(1)	3.44821972546582	-2.33874552385343	-0.01007856182409

Table S12: Cartesian coordinates of 1:1 TEMPO o $OHOCH_3$ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	X	Y	Z
С	(1)	2.55394716973031	0.81002868435446	-1.27662339113347
C	(1)	3.51045233592148	-0.30242633769390	-0.87260362192540
C	(1)	2.71072913419454	-1.56133608421356	-0.57080314311702
H	(1)	3.09431684722054	1.72882576885446	-1.51535742690907
H	(1)	4.10800302312373	-0.00602144851305	-0.00707380484661
H	(1)	2.17695684879012	-1.86382682079334	-1.47721249869476
C	(1)	1.69085564252694	-1.38521432733957	0.56331821197542
C	(1)	2.38418984337387	-1.34368111489161	1.93483371509137
H	(1)	1.66244609590013	-1.13231544271424	2.72250020403502
H	(1)	3.17550565964076	-0.59665132871480	1.97140304633284
H	(1)	2.83168142135219	-2.31827631857792	2.13791109213039
C	(1)	0.69489683727243	-2.54718466940524	0.52886433501928
H	(1)	0.02163364596923	-2.53174882995544	1.38219779065470
H	(1)	1.25098528790138	-3.48602963015775	0.54852909163834
H	(1)	0.10109910141212	-2.51660549714708	-0.38557319149011
C	(1)	1.51135086897616	1.14397773025400	-0.20131365678382
C	(1)	2.13033134438729	1.95305189805521	0.94924747038986
H	(1)	3.02768741491311	1.48370072199850	1.34881108473032
H	(1)	1.40841443538641	2.06058584416340	1.75806030734271
H	(1)	2.40039625808122	2.94779813183144	0.59064780312834
C	(1)	0.37265226257127	1.94853871737980	-0.83142112116976
H	(1)	0.78865518389579	2.83432457212440	-1.31441600362532
H	(1)	-0.35035323526362	2.26156987759528	-0.08212514354911
H	(1)	-0.14725868782282	1.35471642002288	-1.58423538813658
H	(1)	4.21742306316079	-0.49584664808866	-1.68244696771030
H	(1)	2.02943158047597	0.50641899462004	-2.18784960459377
H	(1)	3.36805138459433	-2.39040760593269	-0.30036681276187
N	(1)	0.92318566731775	-0.11654031980932	0.35175931114913
0	(1)	-0.15369720120709	0.02782665622452	1.02519899101249
C	(2)	-2.80400542607372	0.12579476888118	3.59350999479972
C	(2)	-1.46723946193875	-0.17351556109332	4.27693100166396
H	(2)	-3.38700558604320	-0.79118383612184	3.49359537815793
H	(2)	-3.38854563675860	0.84949341305061	4.16653813249319
H	(2)	-2.63585314015086	0.53630745748125	2.59535009408615
C	(2)	-1.68736369043557	-0.80386200602044	5.64698305821012
C	(2)	-0.62990333301711	1.10368336350581	4.39494510080172
H	(2)	-2.23788867202891	-0.12752483593178	6.30358192252867
H	(2)	-2.25381830609139	-1.73096414801996	5.54615097808649
H	(2)	-0.72841911776720	-1.03821136637213	6.11226213452159
H	(2)	0.33489483127849	0.87841436321831	4.85300292120580
H	(2)	-0.45123706597075	1.52953002504064	3.40531398535491
H	(2)	-1.13673058535655	1.85556532690905	5.00441523958111
0	(2)	-0.74792852875838	-1.14880620759088	3.51339086732653
H	(2)	-0.60077314668390	-0.78748903446673	2.62087760499861

 $\label{eq:table_signal} \mbox{Table S13: } Cartesian \mbox{ coordinates of 1:1 TEMPO $p^{$$$"}$HOC(CH_3)_3 computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.}$

Atom	Fragment	X	Y	Z
С	(1)	2.66964172499097	0.70700222015519	-1.34860179362496
C	(1)	3.43159414706997	-0.54603171565215	-0.94198211994994
C	(1)	2.43581651972781	-1.64410394000685	-0.59727769463452
H	(1)	3.35307523526644	1.51246332954241	-1.62662696983565
H	(1)	4.09338042689371	-0.34236404478733	-0.09628130358893
H	(1)	1.83613691474405	-1.86527073513441	-1.48521976534797
C	(1)	1.48763591164796	-1.27358110268504	0.55101605950477
C	(1)	2.19789075721168	-1.34230861700015	1.91204672785263
H	(1)	1.54223810465099	-0.95178264070404	2.68983638772374
H	(1)	3.12707497392876	-0.77416337659534	1.92412806129439
H	(1)	2.43453225767664	-2.38159707933770	2.14653088085633
C	(1)	0.29171213366230	-2.22841619199647	0.55122532321537
H	(1)	-0.35103621338649	-2.05500398669819	1.41129295579506
H	(1)	0.66000624983665	-3.25514938543056	0.58933681712819
H	(1)	-0.30619802526634	-2.10188037675293	-0.35147885989260
C	(1)	1.73652335874886	1.24037742880659	-0.25338949845388
C	(1)	2.52338907568114	1.95162296626282	0.85884614726120
H	(1)	3.33484357843096	1.33820723648129	1.24790825881691
H	(1)	1.85367389583676	2.20369010589747	1.68059855157632
H	(1)	2.95494644937570	2.87408458386992	0.46659977095932
C	(1)	0.73147158722392	2.21497713360659	-0.87141415304628
H	(1)	1.27805093007424	2.99457214206315	-1.40503433223198
H	(1)	0.11351620664856	2.68067997500054	-0.10706171261980
H	(1)	0.07491465402344	1.70188655806199	-1.57428294432622
H	(1)	4.07404140685035	-0.87219569427259	-1.76291200478598
H	(1)	2.07042705918039	0.48029767558286	-2.23544340617744
H	(1)	2.94737404150692	-2.56934530044521	-0.32274072496433
N	(1)	0.96176806752952	0.11226407182163	0.35087485729038
0	(1)	-0.05214926159804	0.43910764033767	1.05902407876373
C	(2)	-3.56667597961586	1.66553466265405	0.14884851547244
C	(2)	-3.41441251616547	0.22320004270536	-0.34178315127621
H	(2)	-3.38547189961334	2.36140019174428	-0.67204661087034
H	(2)	-4.56899337442949	1.84648204704253	0.54407066630138
H	(2)	-2.84468392662778	1.87447163133234	0.94155588646441
C	(2)	-4.37623804321457	-0.06407612262756	-1.48830910986872
C	(2)	-3.63129901745906	-0.76067788901703	0.81121513967777
H	(2)	-5.41240440310487	0.05319746706123	-1.16557688642236
H	(2)	-4.18931221799461	0.62102942452420	-2.31686142157391
H	(2)	-4.23693987683293	-1.08425026900080	-1.84981798347363
H	(2)	-3.49561029771409	-1.78512006265574	0.46035768382069
H	(2)	-2.91005720448428	-0.57308873345509	1.60978269786599
H	(2)	-4.63614355731433	-0.66591819105114	1.22933395688211
0	(2)	-2.10044576538304	0.04092943548932	-0.88309895813327
H	(2)	-1.46037408821404	0.20943748526291	-0.17073801942423

 $\label{eq:table_s14: Cartesian coordinates of 1:1 TEMPO o^{\dots} HOC(CH_3)_3 \ computed at \ UB3LYP-D3(BJ)/def2-TZVP \ level of theory.$

Atom	Fragment	X	Y	Z
C	(1)	3.46154890714554	1.38399686121575	0.23241679060532
C	(1)	3.66468311450320	0.42873706483711	-0.93380348612965
C	(1)	3.22469431343684	-0.96537682462016	-0.51299592421986
Н	(1)	4.08818178453849	1.05532786192038	1.06716198433181
H	(1)	4.71772751015481	0.41470924052284	-1.22312781149926
H	(1)	3.38104513662040	-1.68805871610318	-1.31655827825415
C	(1)	1.74949200242294	-1.04851547247245	-0.09476177095461
C	(1)	1.52141715913828	-2.35546365561711	0.66907864483384
H	(1)	1.90057031712055	-3.18190410982936	0.06545846726251
H	(1)	0.46805588840261	-2.53584391751186	0.86624293623000
H	(1)	2.06068315393605	-2.34591176560903	1.61707538147729
C	(1)	0.82248405757683	-0.99658293374104	-1.31905980323258
H	(1)	1.03619261724247	-0.14377088617588	-1.96140678090905
H	(1)	-0.22029041728511	-0.94357035839002	-1.01321752432952
H	(1)	0.95676016503989	-1.90474957871151	-1.90894139368571
C	(1)	2.00675200725940	1.46438442674540	0.71378646149431
C	(1)	1.96707577783318	2.09731880663985	2.10601811026759
H	(1)	0.94442589086138	2.22898561925400	2.45086085836055
H	(1)	2.45601128888136	3.07212965964022	2.06684635957653
H	(1)	2.49634682962095	1.47307474947593	2.82701196251031
C	(1)	1.14432132145871	2.29418258747069	-0.24993545334047
H	(1)	1.21154140917540	1.93881137215051	-1.27670827668168
H	(1)	1.47417504216405	3.33411063012008	-0.22841940188697
H	(1)	0.10051682402400	2.25783952693514	0.05872726632150
H	(1)	3.10858474395082	0.76309424359532	-1.81290147202880
H	(1)	3.78396995798543	2.39572986914369	-0.02313004739985
H	(1)	3.84483457350478	-1.28974169316509	0.32837195143164
N	(1)	1.42278362099325	0.08911640880499	0.82370478178796
0	(1)	0.32875227830788	0.01314127186080	1.48218686805085
0	(2)	-1.84713565689355	-1.63949269464435	1.12451821981432
H	(2)	-1.09404583771603	-1.04048824345449	1.30970911156966
C	(2)	-2.75276496721189	-1.02917300007474	0.32156681239225
C	(2)	-3.81750727112876	-1.79079778415782	-0.16189392239587
C	(2)	-2.65255258796697	0.31820247787189	-0.03258898364884
C	(2)	-4.76526131849410	-1.20853813736724	-0.99090162122779
H	(2)	-3.88356193040243	-2.83283973710025	0.12283802694458
C	(2)	-3.60732690294106	0.88820122114217	-0.86613354743532
H	(2)	-1.83305186074720	0.90803538411937	0.35727985689003
C	(2)	-4.66769269845230	0.13252608815636	-1.35227135720368
H	(2)	-5.58812017840053	-1.80895863173739	-1.35928545524941
H	(2)	-3.52047439506539	1.93454599639471	-1.13316386757928
H	(2)	-5.40976167059428	0.58128677246576	-1.99938467286046

Table S15: Cartesian coordinates of 1:1 TEMPO $p^{...}HOC_6H_5$ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

Atom	Fragment	X	Y	Z
С	(1)	3.28710299310683	0.95777477307372	0.95286718250212
C	(1)	3.72083457225580	-0.49018804093411	1.12763574550463
C	(1)	2.48392145018975	-1.36321713083445	1.27915051147688
H	(1)	2.73816465399053	1.26931724007965	1.84662858628020
H	(1)	4.35177814718835	-0.58393835558068	2.01414982849107
H	(1)	2.75479589551516	-2.41006439975299	1.43240729439091
C	(1)	1.53314586315855	-1.29857152174830	0.07617773520466
C	(1)	0.16223759319123	-1.84271008434305	0.48309378230808
H	(1)	-0.29849306127346	-1.20518073242383	1.23792158030646
H	(1)	0.28814444585756	-2.84248142969955	0.90177512800361
H	(1)	-0.51167979799172	-1.90447627769953	-0.36747048623357
C	(1)	2.07608401727367	-2.10433733911340	-1.11394801306810
H	(1)	1.44447451668436	-1.94414564249660	-1.98712213262660
H	(1)	2.06632268116210	-3.16732308710784	-0.86772017139592
H	(1)	3.09750995713039	-1.82522399982547	-1.36892490622462
C	(1)	2.39570869028500	1.18722375689552	-0.27471661781152
C	(1)	1.67951200535270	2.53283695178869	-0.14077903164226
H	(1)	0.99854048465456	2.52634515657619	0.71090984715581
H	(1)	1.10762466527580	2.76720248491340	-1.03569642997866
H	(1)	2.42352440969201	3.31579822376928	0.01466432333634
C	(1)	3.21431210001471	1.16709099825671	-1.57508376525193
H	(1)	3.87202970385179	2.03735366818452	-1.60377157476656
H	(1)	2.54464446017013	1.20896903716003	-2.43341882999849
H	(1)	3.83187980307223	0.27390738073385	-1.65973519914666
H	(1)	4.32903898261967	-0.81960862834702	0.28153260341866
H	(1)	4.14983200699057	1.62179893923822	0.86564848445340
H	(1)	1.93779131501732	-1.04498218007606	2.17222367318302
N	(1)	1.34758029573348	0.12227443585712	-0.35435426289306
0	(1)	0.38431566295579	0.34245658514278	-1.16739298209195
0	(2)	-1.65670825335374	1.29778427660413	0.40347625662245
H	(2)	-0.99675650429008	1.01644984446162	-0.26220576596040
C	(2)	-2.82486500790709	0.63531490203343	0.21030604621721
C	(2)	-3.02054183349998	-0.23709707951646	-0.86231570931525
C	(2)	-3.85602758519501	0.84629320117520	1.12585343115520
C	(2)	-4.23775834892589	-0.89105778276590	-1.00772920738331
H	(2)	-2.21810199744059	-0.39405586677111	-1.57234982218798
C	(2)	-5.06715501811880	0.18781811129805	0.96768327167236
H	(2)	-3.68975476352452	1.52719881865403	1.95055879724379
C	(2)	-5.26807711590472	-0.68576629254544	-0.09718403785194
H	(2)	-4.38012056999096	-1.56548835479976	-1.84344084428881
H	(2)	-5.86175090427392	0.35919562412121	1.68365074710892
H	(2)	-6.21452061069956	-1.19663018363585	-0.21600506591821

Table S16: Cartesian coordinates of 1:1 TEMPO o $^{\cdots}\mathrm{HOC}_{6}\mathrm{H}_{5}$ computed at UB3LYP-D3(BJ)/def2-TZVP level of theory.

1.3 Structures

UB3LYP/def2-TZVP computed structures of DTBN and TEMPO 1:2 solvates are given in Figures S1, S2 and S3, along with their relative energies (in kJ mol⁻¹). For DTBN, the asymmetry of the NO environment leads to two isomers of similar energy, which are depicted in a mirror-image representation of the monomeric radical. For TEMPO, this asymmetry is absent and only one of the enantiomeric complexes is shown.

Figure S1: Structure of DTBN 1:2 water solvates (A and B) shown from two different perspectives on the top (A.1 and B.1) and on the bottom (A.2 and B.2) of the figure.

Figure S2: Structure of DTBN 1:2 methanol solvates (A and B) shown from two different perspectives on the top (A.1 and B.1) and on the bottom (A.2 and B.2) of the figure.

Figure S3: Structure of TEMPO 1:2 water and methanol solvates (A and B) from two different perspectives on the top (A.1 and B.1) and on the bottom (A.2 and B.2) of the figure.

Figure S4: Barriers between the different conformations of monosolvates of DTBN and TEMPO, showing that relaxation from p to o/t (red arrows) for DTBN and also from t to p for TEMPO (yellow arrow) is feasible, when there is a driving force. For color definitions, see figures in the main text. C-C-N-C is the torsion of the *t*-butyl groups of the radical, which also provides a path to switch the monohydrate conformations.

1.4 Solvation energies

Absolute and relative computed energies are given in Table S17 for checking purposes for the unrestricted open-shell B3LYP calculations.

Table S17: Electronic energies $E_{\rm el}$ (in $E_{\rm h}$), zero-point vibrational energies ZPVE (in $E_{\rm h}$), and relative zero-point corrected relative energies ΔE_0 (in kJ mol⁻¹, conversion factor 2625.49963948 kJ mol⁻¹/ $E_{\rm h}$) of the DTBN and TEMPO 1:1 and 1:2 complexes obtained at unrestricted open-shell B3LYP-D3(BJ,ABC)/def2-TZVP level and improved by DLPNO-CCSD(T)/aug-cc-pVTZ electronic energies at the B3LYP-D3(BJ,ABC)/def2-TZVP-optimized structures

	$E_{\rm el}^{\rm UB3LYP}$	ZPVE	$\Delta E_0^{\text{UB3LYP}}$	$E_{\rm el}^{\rm DLPNO}$	$\Delta E_0^{\text{DLPNO}}$
	$(E_{\rm h})$	$(E_{\rm h})$	$(kJ mol^{-1})$	$(E_{\rm h})$	$(kJ mol^{-1})$
DTBN					
tHOH	-521.96286462	0.27668926	0.0	-521.21769281	0.0
o […] HOH	-521.96251528	0.27661049	0.7	-521.21748477	0.3
p HOH	-521.96178146	0.27665978	2.8	-521.21690572	2.0
oo…HOH	-598.40683952	0.30182280	0.0	-597.57508481	0.0
oo…HOH	-598.40668750	0.30174471	0.2	-597.57463966	1.0
t HOCH ₃	-561.24950408	0.30564064	0.0	-560.43854376	0.0
o […] HOCH ₃	-561.24916050	0.30558674	0.8	-560.43828409	0.7
p […] HOCH ₃	-561.24834478	0.30555387	2.8	-560.43746986	2.7
oo HOCH ₃	-676.98087451	0.35931741	0.0	-676.0181413	0.0
oo…HOCH ₃	-676.98044578	0.35912118	0.6	-676.0177608	0.5
$t - HOC(CH_3)_3$	-679.17608407	0.38946091	0.0	-678.1838391	0.0
$o^{}HOC(CH_3)_3$	-679.17572965	0.38934704	0.6	-678.1833769	0.9
p···HOC(CH ₃) ₃	-679.17531484	0.38952238	2.2	-678.1829846	2.4
TEMPO					
tHOH	-560.07574018	0.28533849	0.0	-559.2703389	0.5
oHOH	-560.07558957	0.28532752	0.4	-559.2704849	0.1
p HOH	-560.07594089	0.28554610	0.0	-559.2707348	0.0
t $HOCH_3$	-599.36238799	0.31424650	0.0	-598.4908260	0.7
o HOCH ₃	-599.36242930	0.31443855	0.4	-598.4912241	0.1
p···HOCH ₃	-599.36258800	0.31447788	0.1	-598.4913199	0.0
$t^{\dots}HOC(CH_3)_3$	-717.28907136	0.39819014	0.4	-716.2362657	0.7
$o^{}HOC(CH_3)_3$	-717.28890734	0.39815167	0.7	-716.2362761	0.5
$p^{\cdots}HOC(CH_3)_3$	-717.28942010	0.39839686	0.0	-716.2367251	0.0
p' HOC_6H_5	-791.08351286	0.36760684	0.9	-789.8887915	1.4
0 ··· HOC ₆ H ₅	-791.08325220	0.36743067	1.2	-789.8885185	1.7
$p^{}HOC_6H_5$	-791.08388021	0.36761840	0.0	-789.8893473	0.0

1.5 Fragment energies

Table S18: Electronic energies $E_{\rm el}$ (in $E_{\rm h}$) and zero-point vibrational energies (in $E_{\rm h}$) of DTBN, TEMPO, water, methanol, t-butanol and phenol monomers and selected dimers and trimers obtained at closed-shell and unrestricted open-shell B3LYP-D3(BJ,ABC)/def2-TZVP.

	$E_{\rm el}^{\rm B3LYP/TZVP}$ $(E_{\rm h})$	ZPVE $(E_{\rm h})$
H ₂ O monomer	-76.42649306	0.02115550
H_2O dimer	-152.86285904	0.04573284
H_2O trimer	-229.31062345	0.07271290
HOCH ₃ monomer	-115.71252120	0.05099693
$HOCH_3$ dimer	-231.43594570	0.10426402
$HOCH_3$ trimer	-347.17004218	0.15883233
$HOC(CH_3)_3$ monomer	-233.63844773	0.13502409
$HOC(CH_3)_3$ dimer	-467.29008951	0.27221408
HOC_6H_5 monomer	-307.42934517	0.10422733
HOC_6H_5 dimer	-614.87094233	0.21017281
DTBN monomer	-445.52258443	0.25255897
TEMPO monomer	-483.63642104	0.26144033

1.6 Dissociation energies

Table S19: Dissociation energies of DTBN and TEMPO solvates (in kJ mol⁻¹), determined by the difference between the electronic energies of the solvates E^{AB} (in kJ mol⁻¹) and the sum of the electronic energies of the 1:0 and 0:1 monomers $E^A + E^B$ (in kJ mol⁻¹) obtained at closed- and unrestricted open-shell B3LYP-D3(BJ,ABC)/def2-TZVP. The corresponding ZPVE-corrected results are also included.

	$E_{\rm el}^{\rm A} + E_{\rm el}^{\rm B}$	$E_0^{\mathrm{A}} + E_0^{\mathrm{B}}$	$E_{\rm el}^{\rm AB}$	E_0^{AB}	$\Delta E_{\rm el}$	ΔE_0
	$(kJ mol^{-1})$	$(kJ mol^{-1})$	$(kJ mol^{-1})$	$(kJ mol^{-1})$	$(kJ mol^{-1})$	$(kJ mol^{-1})$
DTBN						
$t^{}H_2O$	-1370377.115	-1369658.478	-1370413.313	-1369686.865	36.2	28.4
$0^{}H_2O$	-1370377.115	-1369658.478	-1370412.396	-1369686.155	35.3	27.7
$p^{}H_2O$	-1370377.115	-1369658.478	-1370410.469	-1369684.099	33.4	25.6
$t^{}HOCH_3$	-1473522.567	-1472725.582	-1473560.371	-1472757.911	37.8	32.3
o […] HOCH ₃	-1473522.567	-1472725.582	-1473559.469	-1472757.151	36.9	31.6
p […] HOCH ₃	-1473522.567	-1472725.582	-1473557.327	-1472755.095	34.8	29.5
$t - HOC(CH_3)_3$	-1783137.045	-1782119.446	-1783176.564	-1782154.034	39.5	34.6
0 ··· HOC(CH ₃) ₃	-1783137.045	-1782119.446	-1783175.633	-1782153.403	38.6	34.0
$p^{\dots}HOC(CH_3)_3$	-1783137.045	-1782119.446	-1783174.544	-1782151.853	37.5	32.4
TEMPO						
$t^{}H_2O$	-1470444.979	-1469703.024	-1470478.654	-1469729.498	33.7	26.5
$0^{}H_2O$	-1470444.979	-1469703.024	-1470478.258	-1469729.131	33.3	26.1
$p^{\dots}H_2O$	-1470444.979	-1469703.024	-1470479.181	-1469729.480	34.2	26.5
$t^{}HOCH_3$	-1573590.432	-1572770.128	-1573625.734	-1572800.680	35.3	30.6
o […] HOCH ₃	-1573590.432	-1572770.128	-1573625.842	-1572800.284	35.4	30.2
pHOCH ₃	-1573590.432	-1572770.128	-1573626.259	-1572800.597	35.8	30.5
$t^{}HOC(CH_3)_3$	-1883204.909	-1882163.992	-1883242.198	-1882196.750	37.3	32.8
$0^{\cdots}HOC(CH_3)_3$	-1883204.909	-1882163.992	-1883241.768	-1882196.421	36.9	32.4
$p^{\dots}HOC(CH_3)_3$	-1883204.909	-1882163.992	-1883243.114	-1882197.123	38.2	33.1
$p^{}HOC_6H_5$	-2076942.884	-2075982.824	-2076990.442	-2076025.260	47.6	42.4
p' HOC_6H_5	-2076942.884	-2075982.824	-2076989.478	-2076024.326	46.6	41.5
0.0 HOC ₆ H ₅	-2076942.884	-2075982.824	-2076988.793	-2076024.104	45.9	41.3

1.7 LED analysis

To further analyze how intermolecular interactions contribute to the different torsional potentials of water around the N-O bond in DTBN complexes, a LED-analysis with DLPNO-CCSD(T)/aug-cc-pVTZ method^[27] of London dispersion contributions was carried out for the DFT-optimized 1:1 structures (Tables S20, S21, S22). The energy results are summarized in Table S23, relative to the most stable isomer of each complex, with and without DFT ZPVE added. One can see that the relative ZPVE correction is larger for TEMPO complexes, often reaching the same order of magnitude as the relative London dispersion contributions. Therefore we do not discuss the trends in detail, although we note that for phenol the London dispersion appears to switch between two p-type structures. For DTBN complexes, the ZPVE corrections are less isomer dependent and one can observe that for water and methanol, London dispersion favours t structures relative to p structures. For the bulky *t*-BuOH solvent, the p structure is always less stable than t, but surprisingly more so without London dispersion. No systematic trends spanning all solvent molecules can be identified.

Table S20: Selected results (in $E_{\rm h}$) of the LED analysis carried out at the stationary points of the 1:1 DTBN solvates at unrestricted open-shell DLPNO-CCSD(T)/aug-cc-pVTZ//UB3LYP-D3(BJ,ABC)/def2-TZVP level.

DTBN	1:1 tHOH	1:1 pHOH	1:1 o HOH
FINAL SUMMARY DLPNO-CCSD		r	
ENERGY DECOMPOSITION (Eh)			
Intrafragment REF. energy:			
Intra fragment 1 (REF.)	-442.7573065	-442.7703945	-442.762830
Intra fragment 2 (REF.)	-76.03750343	-76.03289252	-76.03895266
Interaction of fragments 2 and 1:			
Electrostatics (REF.)	-0.062534701	-0.057779186	-0.05739387
Exchange (REF.)	-0.014267003	-0.011123090	-0.012551217
Dispersion (strong pairs)	-0.005604805	-0.004861762	-0.005659446
Dispersion (weak pairs)	-0.000545353	-0.000462412	-0.000508010
Sum of non dispersive correlation terms:			
Non dispersion (strong pairs)	-2.244406263	-2.244074384	-2.244117794
Non dispersion (weak pairs)	-0.004765617	-0.004774328	-0.004785124
DTBN	1:1 t···HOCH ₃	1:1 pHOCH ₃	1:1 o HOCH ₃
FINAL SUMMARY DLPNO-CCSD			
ENERGY DECOMPOSITION (Eh)			
Intrafragment REF. energy:	110 5500000	110 5055001	
Intra fragment 1 (REF.)	-442.7533988	-442.7675394	-442.7601312
Intra fragment 2 (REF.)	-115.0675475	-115.0626008	-115.0690439
Interaction of fragments 2 and 1.			
Floetrostatics (PFF)	0.066925697	0.06145750	0.060192104
Electrostatics (REF.)	-0.000255027	-0.00145750	-0.000185104
Dispension (strong poing)	-0.013069290	-0.012031309 0.005297271	-0.01301030
Dispersion (strong pairs)	-0.000378470	-0.005287571	-0.000349331
Dispersion (weak pairs)	-0.000808431	-0.000738030	-0.000818035
Sum of non dispersive correlation terms:			
Non dispersion (strong pairs)	-9 495417711	-9 495936011	-2 425182645
Non dispersion (weak pairs)	-0.00/052238	-0.00/0530/1	-0.00/086028
	-0.004302200	-0.004355341	-0.004980028
DTBN	1.1 t HOC(CH ₂) ₂	1.1 p HOC(CH ₂) ₂	1.1 oHOC(CH ₂) ₂
FINAL SUMMARY DLPNO-CCSD	111 0 110 0 (0113)3	111 p 110 0 (0113)3	111 0 110 0 (0113)3
ENERGY DECOMPOSITION (Eh)			
Intrafragment REF. energy:			
Intra fragment 1 (REF.)	-442.7528284	-442.7631036	-442.7604928
Intra fragment 2 (REF.)	-232.2207066	-232.2158289	-232.2230918
Interaction of fragments 2 and 1:			
Electrostatics (REF.)	-0.068353742	-0.063892714	-0.060854324
Exchange (REF.)	-0.016522026	-0.014707930	-0.014132134
Dispersion (strong pairs)	-0.007835535	-0.008223963	-0.007582220
Dispersion (weak pairs)	-0.001630381	-0.001642262	-0.001572660
Sum of non dispersive correlation terms:			
Non dispersion (strong pairs)	-2.988801968	-2.988459727	-2.988595161
Non dispersion (weak pairs)	-0.005830899	-0.005834088	-0.005836789

Table S21: Selected results (in $E_{\rm h}$) of the LED analysis carried out at the stationary points of the 1:1 TEMPO solvates at DLPNO-CCSD(T)/aug-cc-pVTZ level

TEMPO	1:1 t HOH	1:1 p HOH	1:1 o HOH
FINAL SUMMARY DLPNO-CCSD		1	
ENERGY DECOMPOSITION (Eh)			
Intrafragment REF_energy:			
Intra fragment 1 (BEF)	-480 6546869	-480 6657798	-480 6633423
Intra fragment 2 (RFF)	76 03852110	76 03232582	76 04081553
mitia fragment 2 (REF.)	-10.03032113	-10.03232382	-70.04001000
Interaction of framments 2 and 1.			
File (DEE)	0.001159990	0.050475000	0.050000170
Electrostatics (REF.)	-0.001103338	-0.039473289	-0.052859170
Exchange (REF.)	-0.014098292	-0.011568815	-0.011696286
Dispersion (strong pairs)	-0.004869395	-0.004779702	-0.004953241
Dispersion (weak pairs)	-0.000562829	-0.00047226	-0.000533904
Sum of non dispersive correlation terms:			
Non dispersion (strong pairs)	-2.392591648	-2.392486622	-2.392416424
Non dispersion (weak pairs)	-0.005207015	-0.005261219	-0.005284910
TEMPO	1:1 tHOCH ₃	1:1 pHOCH ₃	1:1 oHOCH ₃
FINAL SUMMARY DLPNO-CCSD			
ENERGY DECOMPOSITION (Eh)			
Intrafragment BEF energy:			
Intra fragment 1 (PFF)	480 6502207	480 6633663	480 6602110
Intra fragment 2 (DEE)	115 069949	115 0692492	115 0708210
Intra fragment 2 (REF.)	-115.006246	-110.0020420	-115.0706619
Interaction of fragments 2 and 1:	0.005501.150	0.000505005	0.055050400
Electrostatics (REF.)	-0.065761478	-0.062525035	-0.055972490
Exchange (REF.)	-0.015620611	-0.012352595	-0.012971215
Dispersion (strong pairs)	-0.005582021	-0.005518503	-0.006004878
Dispersion (weak pairs)	-0.000894144	-0.000800089	-0.000862026
Sum of non dispersive correlation terms:			
Non dispersion (strong pairs)	-2.573527319	-2.573427182	-2.573311708
Non dispersion (weak pairs)	-0.005387701	-0.005439193	-0.005479905
TEMPO	1:1 tHOC(CH ₃) ₃	1:1 pHOC(CH ₃) ₃	1:1 o HOC(CH ₃) ₃
FINAL SUMMARY DLPNO-CCSD	(0)0	1 (0)0	(0)0
ENERGY DECOMPOSITION (Eh)			
Intrafragment BEE energy:			
Intra fragment 1 (PFF)	480 6407781	480 6608265	480 6605541
Intra fragment 2 (DEE)	-400.0497701	-400.0000200	-460.0005541
Intra fragment 2 (REF.)	-232.2212308	-232.2132479	-232.2240037
Interaction of fragments 2 and 1:			
Electrostatics (REF.)	-0.067506215	-0.065446805	-0.057196065
Exchange (REF.)	-0.016619790	-0.014053707	-0.013440133
Dispersion (strong pairs)	-0.007413012	-0.007471197	-0.006929736
Dispersion (weak pairs)	-0.001573479	-0.001563031	-0.001551763
Sum of non dispersive correlation terms:			
Non dispersion (strong pairs)	-3.136619020	-3.136575602	-3.13653382
Non dispersion (weak pairs)	-0.006279348	-0.006328804	-0.006354168
L	1	1	1

Table S22: Selected results (in $E_{\rm h}$) of the LED analysis carried out at the stationary points of the 1:1 TEMPO solvates at DLPNO-CCSD(T)/aug-cc-pVTZ level

TEMPO	1:1 t HOC ₆ H ₅	$1:1 \text{ p}^{\dots}\text{HOC}_6\text{H}_5$	1:1 o HOC ₆ H ₅
FINAL SUMMARY DLPNO-CCSD			
ENERGY DECOMPOSITION (Eh)			
Intrafragment REF. energy:			
Intra fragment 1 (REF.)	-480.6550902	-480.6528033	-480.6461734
Intra fragment 2 (REF.)	-305.6345063	-305.6322632	-305.6424592
Interaction of fragments 2 and 1:			
Electrostatics (REF.)	-0.078625582	-0.08038416	-0.077489731
Exchange (REF.)	-0.014842611	-0.01620787	-0.016720264
Dispersion (strong pairs)	-0.007489209	-0.008828952	-0.007630852
Dispersion (weak pairs)	-0.001446703	-0.001573852	-0.001555936
Sum of non dispersive correlation terms:			
Non dispersion (strong pairs)	-3.339684621	-3.339961566	-3.339423483
Non dispersion (weak pairs)	-0.006856432	-0.006823132	-0.006816266

Table S23: Relative electronic energies (ΔE in kJ mol⁻¹) for different 1:1 complex conformations and relative electronic energies without London Dispersion (LD) terms (strong and weak-pairs) obtained from a LED analysis. The calculations were carried out at DLPNO-CCSD(T)/aug-cc-pVTZ//UB3LYP/def2-TZVP level. For comparison, the effect of DFT ZPVE correction on the relative DLPNO-CCSD(T) energies is also given as ΔE_0 .

$DTBN + H_2O$	1:1 t	1:1 p	1:1 o
ΔE	0.0	2.1	0.5
ΔE_0	0.0	2.0	0.3
ΔE (without LD term)	0.1	0.0	0.7
$DTBN + HOCH_3$			
ΔE	0.0	2.8	0.7
ΔE_0	0.0	2.7	0.7
ΔE (without LD term)	0.9	0.0	1.3
$DTBN + HOC(CH_3)_3$			
ΔE	0.0	2.2	1.2
ΔE_0	0.0	2.4	0.9
ΔE (without LD term)	0.0	3.3	0.4
$TEMPO + H_2O$	1:1 t	1:1 p	1:1 o
ΔE	1.0	0.0	0.7
ΔE_0	0.5	0.0	0.1
ΔE (without LD term)	1.5	0.0	1.3
$TEMPO + HOCH_3$			
ΔE	1.3	0.0	0.3
ΔE_0	0.7	0.0	0.1
ΔE (without LD term)	1.7	0.0	1.7
$TEMPO + HOC(CH_3)_3$			
ΔE	1.2	0.0	1.2
ΔE_0	0.7	0.0	0.5
ΔE (without LD term)	1.4	0.3	0.0
$TEMPO + HOC_6H_5$	1:1 p'	1:1 p	1:1 o
ΔE	1.5	0.0	2.2
ΔE_0	1.4	0.0	1.7
ΔE (without LD term)	0.0	2.4	1.4

2 Experimental and Computed Spectra

2.1 Measurement details

Previous gratin jet measurements^[28]:

TEMPO and DTBN hydrate complexes were prepared in supersonic jet expansions through a 0.2 mm \times 700 mm slit nozzle at a stagnation pressure of 750 mbar. CaF₂ optics, an optical filter (F20: wavenumber range <4000 cm⁻¹), an InSb/HgCdTe detector, a 150 W tungsten lamp and a VERTEX 70v FTIR spectrometer (scanning speed 140 kHz, double sided mode, 2 cm⁻¹ resolution) were used to probe the gas pulses. A more detailed description of the experimental setup can be found in Ref.^[29].

Current filet jet measurements:

The new spectra reported in this work were obtained in supersonic jet expansions through a 0.2 mm \times 600 mm slit nozzle from gas mixtures prepared in a 67 L reservoir at a stagnation pressure of 750 mbar and at room temperature. Continuous pumping and large vacuum buffers with a volume of 23 m³ allowed for a sufficiently low background pressure during the experiment. A liquid nitrogen-cooled InSb detector, a 150 W tungsten lamp, CaF₂ optics, and an optical filter (2500 to 4100 cm⁻¹) were employed in a Bruker IFS 66v/S FTIR spectrometer (scanning speed 80 kHz with gain ranging, 2 cm⁻¹ resolution) to probe the gas pulses. A more detailed description of the experimental setup can be found in Ref.^[30]

Table S24: The spectra shown in Fig. 4 and Fig. 5 of the manuscript are the average of # gas pulses recorded on the dates dd/mm/yyyy using different setups. Further spectra recorded to find the best expansion conditions and to support the identity of absorption features in terms of cluster stoichiometry are not listed.

Spectrum	#	Setup	dd/mm/yyyy	Figure
$DTBN + H_2O$	150	Filet Jet	22/10/2021	4
$DTBN + HOCH_3$	100	Filet Jet	21/09/2021	4
$TEMPO + H_2O [28]$	900	Gratin Jet	19/01/2021	4
$TEMPO + HOCH_3$	500	Filet Jet	23/04/2021	4
$DTBN + HOC(CH_3)_3$	300	Filet Jet	14/12/2021	5
150 scans (14/12/2021) plus 150 scans (15/11/2021)			15/12/2021	
$TEMPO + HOC(CH_3)_3$	125	Filet Jet	19/05/2021	5
$TEMPO + HOC_6H_5$	575	Filet Jet	11/05/2021	5

Table S25: Relative scaling of spectra shown in Fig. 4 and Fig. 5 of the manuscript.

Spectrum	Figure	Scaling factor
$DTBN + H_2O$	4	$\frac{7}{10}$ (21/10/2021)
$DTBN + HOCH_3$	4	$\frac{3}{10}$ (21/09/2021)
$TEMPO + H_2O$ ^[28]		(19/01/2021)
$TEMPO + HOCH_3$	4	$\frac{1}{2}$ (23/04/2021)
$4 \text{ DTBN} + \text{HOC}(\text{CH}_3)_3$	5	$\left \frac{7}{10} \left(\frac{14}{12} \right) + \frac{15}{12} \right = \frac{7}{10} \left(\frac{14}{12} \right) + \frac{15}{12} \left($
$TEMPO + HOC(CH_3)_3$	5	$\frac{3}{5}(19/05/2021)$
$TEMPO + HOC_6H_5$	5	$\frac{3}{5}$ (11/05/2021)

2.2 Comparison to computations

Table S26: Experimental wavenumbers of DTBN and TEMPO complexes (in cm⁻¹) along with the unscaled computed wavenumbers $\tilde{\nu}$ (in cm⁻¹) and absolute infrared intensities I (in km mol⁻¹) at unrestricted open-shell B3LYP-D3(BJ,ABC)/def2-TZVP level.

Structure	Experiment	Computed	
	$\tilde{\nu}$	$\tilde{\nu}$	Ι
$DTBN + H_2O$			
tHOH	3483.5	3578	382
oHOH	3509	3600	339
pHOH	-	3594	556
p <u>non</u>		0001	000
ooHOH (dark grou)	/2280	2528/2/25	480/613
oowIIOII (light grey)	-/ 3309	3526/3455	409/013
$\overline{\mathbf{n}}$ OF (light grey)	-/ 3369	3037/3402	484/379
$DTBN + HOCH_3$			
tHOCH3	3469.5	3575	523
0HOCH2	3496	3601	471
pHOCH	-	3593	750
p <u>n</u> oon3	-	5555	100
ooUOCU (doult group)	2415 /2252	2100/2126	791 /664
$100 \underline{11}0011_3 (\text{dark grey})$	0410/0002	3490/3430	751/004
00^{-1} <u>H</u> OCH ₃ (light grey)	3415/3352	3515/3452	(51/645
$DTBN + HOC(CH_2)_2$			
$t = HOC(CH_2)_2$	3/38 5	3569	503
$\frac{1}{100}$	0400.0	3601	462
$0 \underline{\Pi}OC(CH_3)_3$	-	3001	402
$p^{-1}\underline{\mathbf{H}}OC(C\mathbf{H}_3)_3$	-	3004	322
$TEMPO + H_2O$			
tHOH	-	3589	405
0HOH	3521	3620	347
pHOH	3/07	3583	587
p <u>n</u> on	5457	0000	501
ooHOH	2486/2200	2525/2450	407/483
00 <u>n</u> On	3480/3399	5555/ 5459	491/405
$TEMPO + HOCH_{\bullet}$			
$+ \dots + HOCH$		2582	540
	-	2003	049 401
	3509	3019	481
$p - \underline{H}OCH_3$	3490	3590	710
ooHOCH.	3416/3365	2512/2458	760/512
	3410/3303	3313/3438	109/010
TEMPO + HOC(CH)			
$1 \text{EMPO} + \text{HOC}(\text{CH}_3)_3$		2500	100
$t^{\rm TT} \underline{H}OCH(CH_3)_3$	-	3582	496
$0 \stackrel{\text{o}}{\longrightarrow} HOCH(CH_3)_3$	-	3616	485
$p^{\cdots}\underline{H}OCH(CH_3)_3$	3463	3585	618
$TEMPO + HOC_6H_5$			
$o^{\cdots}\underline{H}OC_{6}H_{5}$	3360	3490	1059
$p^{\dots}\underline{H}OC_6H_5$	3348	3478	1101
p' <u>H</u> OC ₆ H ₅	3348?	3475	1314

Structure	B3LYP	B2PLYP	TPSS	TPSS
	def2-QZVP	def2-TZVP	def2-TZVP	def2-QZVP
	$\tilde{\nu}$	$\tilde{\nu}$	$\tilde{\nu}$	$\tilde{\nu}$
$DTBN + H_2O$				
t… <u>H</u> OH	3592	3614	3426	3435
o HOH	3610	3640	3454	3457
p HOH	3608	3634	3449	3454
$DTBN + HOCH_3$				
$t \cdots \underline{H}OCH_3$	3594	3608	3415	3424
$o^{\cdots}\underline{H}OCH_3$	3617	3638	3443	3452
$p^{\dots}\underline{H}OCH_3$	3613	3629	3445	3457
$DTBN + HOC(CH_3)_3$				
$t \cdot \cdot \cdot \underline{H}OC(CH_3)_3$	3587	3584	3403	3415
$o^{}\underline{H}OC(CH_3)_3$	3618	3621	3436	3446
$p^{\dots} \underline{HOC(CH_3)_3}$	3619	3619	3444	3451
$TEMPO + H_2O$				
o… <u>H</u> OH	3630	3655	3484	3485
р <u>Н</u> ОН	3597	3621	3438	3443
$t^{\dots}\underline{H}OH_3$	3630	3655	3484	3485
$TEMPO + HOCH_3$				
o <u>H</u> OCH ₃	3635	3650	3462	3469
$p^{\dots}\underline{H}OCH_3$	3603	3621	3439	3449
$t^{\dots}\underline{H}OCH_3$	3635	3650	3462	3469
$TEMPO + HOC(CH_3)_3$				
$o^{\cdots} \underline{H}OCH(CH_3)_3$	3633	3635	3456	3467
$p^{\dots} \underline{H}OCH(CH_3)_3$	3603	3601	3426	3438
$t^{\dots}\underline{H}OCH(CH_3)_3$	3633	3635	3456	3467
$TEMPO + HOC_6H_5$				
$o^{\cdots} \underline{H}OC_6H_5$	3508	3513	3330	3348
$p^{}\underline{H}OC_6H_5$	3494	3501	3306	3314
$p' \cdot \cdot \cdot \underline{H}OC_6H_5$	3492	3497	3304	3315

Table S27: Computed wavenumbers of DTBN and TEMPO complexes (in cm^{-1}) with unrestricted open-shell B3LYP-D3(BJ,ABC), B2PLYP-D3 and TPSS-D3(BJ) functionals using different basis sets.

2.3 Closed shell reference data

Table S28: Experimental hydrogen-bonded (OH_b) stretching wavenumbers of water, methanol, tert-butanol and phenol dimers and trimers along with the harmonic B3LYP-D3(BJ)/def2-TZVP computed values.

	He-jet ^[31–35]	B3LYP-D3(BJ,ABC)/def2-TZVP
	$\tilde{\nu}$	$\tilde{\nu}$
OH_b (H ₂ O dimer)	3602	3666
OH_b (H ₂ O trimer)	3533	3574/3564
OH_b (HOCH ₃ dimer)	3575	3647
OH_b (HOCH ₃ trimer)	3474/3469	3548/3542
OH_b (HOC(CH ₃) ₃ dimer)	3497	3609
$OH_b (HOC_6H_5 \text{ dimer})$	3530	3647

References

[1] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098–3100.

- [2] A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- [3] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785–789.
- [4] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- [5] F. Neese, WIREs Comput. Mol. Sci. 2018, 8, e1327.
- [6] P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.
- [7] S. Grimme, J. Chem. Theory Comput. 2019, 15, 2847–2862.
- [8] C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652–1671.
- [9] S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989–2009.
- [10] S. Grimme, J. Chem. Phys. 2006, 124, 034108.
- [11] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
- [12] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [13] A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 123, 154101.
- [14] E. R. Johnson, A. D. Becke, J. Chem. Phys. 2005, 123, 024101.
- [15] E. R. Johnson, A. D. Becke, J. Chem. Phys. 2006, 124, 174104.
- [16] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian16 Revision A.03, Gaussian Inc. Wallingford CT, **2016**.
- [18] C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101.
- [19] C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, 034106.
- [20] C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese, J. Chem. Phys. 2016, 144, 024109.
- [21] Y. Guo, C. Riplinger, D. G. Liakos, U. Becker, M. Saitow, F. Neese, J. Chem. Phys. 2020, 152, 024116.
- [22] R. A. Kendall, T. H. Dunning Jr, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796–6806.
- [23] W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, F. Neese, J. Chem. Theory Comput. 2016, 12, 4778–4792.
- [24] G. Bistoni, WIREs Comput. Mol. Sci. 2020, 10, e1442.
- [25] F. Neese, J. Am. Chem. Soc. 2006, 128, 10213–10222.
- [26] https://sites.google.com/site/orcainputlibrary/coupled-cluster.
- [27] A. Altun, M. Saitow, F. Neese, G. Bistoni, J. Chem. Theory Comput. 2019, 15, 1616–1632.
- [28] E. M. Brás, T. L. Fischer, M. A. Suhm, Angew. Chem. Int. Ed. 2021, 60, 19013–19017.
- [29] H. C. Gottschalk, T. L. Fischer, V. Meyer, R. Hildebrandt, U. Schmitt, M. A. Suhm, Instruments 2021, 5, 12.
- [30] M. A. Suhm, F. Kollipost, Phys. Chem. Chem. Phys. 2013, 15, 10702–10721.
- [31] U. Buck, F. Huisken, Chem. Rev. 2000, 100, 3863–3890.
- [32] R. W. Larsen, P. Zielke, M. A. Suhm, J. Chem. Phys. 2007, 126, 194307.
- [33] K. E. Otto, Z. Xue, P. Zielke, M. A. Suhm, Phys. Chem. Chem. Phys. 2014, 16, 9849–9858.
- [34] D. Zimmermann, T. Häber, H. Schaal, M. A. Suhm, Mol. Phys. 2001, 99, 413-425.
- [35] T. Ebata, T. Watanabe, N. Mikami, J. Phys. Chem. **1995**, 99, 5761–5764.