Enhance Silicon-Nitride Formation Through Ammonolysis of Silanes with Pseudo-halide Substituents

Anil Kumar Tummanapelli,^{1,2} Yingqian Chen,^{1,2} Ming Wah Wong*^{1,2}

- ¹ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543. Email: <u>chmwmw@nus.edu.sg</u>
- ² Applied Materials—NUS Advanced Materials Corporate Lab, 5A Engineering Drive 1, Singapore 117411

Supporting Information

CONTENTS

Ammonolysis reaction using SiH_3X model (X = F, Cl, Br and I)

Construction of the cluster models.

Table S1: Summery of reaction energies and barriers of ammonolysis reaction between SiH₃X and NH₃ for all 33 substituents.

Figure S1: The reaction barrier profile of ammonolysis reaction using cluster model 2.

The ZIP compressed folder contains XYZ coordinate files for all calculated structures.

Ammonolysis reaction using SiH₃X model (X = F, Cl, Br and I)

We conducted barrier calculations for the ammonolysis reaction of SiH₃X, where X represents F, Cl, Br, and I at M06-2X/6-311G(d,p) level. The calculated activation barriers and reaction energies are summarized in the below Table. Notably, there is a descending trend in activation barriers as we move down the halogen group, with X = F > Cl > Br > I. The iodine substituent exhibits the slightly lowest barrier at 16.9 kcal/mol compared to bromine at 17.6 kcal/mol.

X	ΔG	ΔG≠
F	17.2	33.9
Cl	8.2	19.8
Br	8.9	17.6
Ι	7.2	16.9

 $SiH_3X + NH_3 \rightarrow SiH_3NH_2 + HX$

values are in kcal/mol

he primary goal of this paper is to evaluate the ammonolysis barriers of halides and pseudohalides accurately using a more extensive basis set, namely 6-311++G(3df,2p). Due to the unavailability of the corresponding basis set for the iodine element, the iodine substituent (X = I) has been excluded from this study

Construction of the cluster models

To investigate surface reactions on the SiO₂ bulk surface, Fang, G., et al.[1] have proposed the adoption of two cluster models: the double-hydroxyl Si₉O₅H₁₂–(OH)₂ cluster model, and the Si₉H₁₂–(OH)₂ cluster model. These models are derived from the fully oxidized Si(100) surface and resemble the hydroxylated α -SiO2 (1010) surface.

In both cluster models, one of the hydroxyl group is replaced with Cl atom and other hydroxyl group is replaced with just hydrogen atom. Remaining 5 oxygen atoms in $Si_9O_5H_{12}-(OH)_2$ cluster model are replaced with NH groups. Schematic representation of modified cluster models for the current study is as shown below. We called Si_9H_{13} -Cl as cluster Cluster Model1 and $Si_9N_5H_{18}$ -Cl as cluster 2 in this paper. color code is green for Cl, blue for N, red for O, grey for Si, white = H.

References

1. Fang, G., et al., Surface Pseudorotation in Lewis-Base-Catalyzed Atomic Layer Deposition of SiO2: Static Transition State Search and Born–Oppenheimer Molecular Dynamics Simulation. The Journal of Physical Chemistry C, 2012. **116**(50): p. 26436-26448.

	$SiH_3X + NH_3 \rightarrow SiH_3NH_2 + HX$		
Х	Reaction Energy	Reaction Barrier	
Н	-7.5	51.9	
F	19.3	37.7	
Cl	10.6	23.6	
Br	10.1	20.6	
CH ₃	-13.5	58.6	
CF ₃	-18.7	44.5	
CF ₂ CN	-16.7	39.1	
CN	-1.5	35.2	
P(CH3)2	-11.5	46.8	
PF ₂	-14.9	49.9	
PH_2	-8.8	46.0	
P(CF3)2	-8.5	31.8	
NH ₂	-0.2	42.5	
NCO	10.1	35.0	
N3	5.5	33.1	
NCS	11.3	31.0	
NCSe	13.7	28.6	
OH	9.0	40.9	
OCH ₃	9.8	39.2	
OF	6.9	30.2	
OCF ₃	9.6	27.5	
OCN	-13.4	17.4	
SCMe ₃	-1.1	35.4	
SCH ₃	0.3	34.5	
SH	0.0	31.7	
SF	-0.6	27.1	
SCF ₃	0.4	21.6	
SCN	-6.7	19.8	
SeCH ₃	1.2	30.7	
SeH	0.4	27.1	
SeF	1.0	21.6	
SeCF ₃	2.1	20.8	
SeCN	-1.3	17.9	

Table S1: Summery of reaction energies and barriers (in kcal/mol) of ammonolysis reactionbetween SiH_3X and NH_3 for all 33 substituents at M062X/6-311++G(3df,2p).

Figure S1: The reaction barrier profile of ammonolysis reaction for X = Cl using cluster model 2 M062X/6-311++G(3df,2p) level. The structures are optimized at M062X/6-311G(d,p) level.