Insights on Adsorption of Pyocyanin in Montmorillonite using Molecular Dynamics

Simulation

Bidemi T. Fashina^{1,2*}, Youjun Deng¹, Tahir Cagin³, and Randall T. Cygan¹ $\Box \Box \Box$ btfashi@sandia.gov

- 1. Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
- 2. Geochemistry Department, Sandia National Laboratories, P.O. Box 5800-0754, Albuquerque, New Mexico 87123, USA
- 3. Materials Science and Engineering, Chemical Engineering, Texas A&M University, TX 77843-2474, USA

Supporting Information

Interatomic Potentials

Molecular dynamics simulations rely on interatomic potentials for accurately describing the interactions of atoms with each other. The total potential energy (E_{Total}) of the molecular system is a summation of the energies from the non-bonded $(E_{non-bonded})$ and bonded (E_{bonded}) components of the system:

$$E_{Total} = E_{nonbonded} + E_{bonded}$$
 1.1

Non-bonded interactions — The contribution of the non-bonded components ($E_{non-bonded}$) to E_{Total} is the summation of the Columbic (or electrostatics energy) and the van der Waals energy:

$$E_{nonbonded} = E_{Coul} + E_{VDW}$$
 1.2

The electrostatics energy resulting from long-range interactions is computed with Coulomb's law (equation 1.3).

$$E_{Coul} = \frac{e^2}{4\pi\varepsilon_o} \sum_{i\neq j} \frac{q_i q_j}{r_{ij}}$$
1.3

Where q_i and q_j are the charges of the two interacting atoms, e is the electron charge, and ε_o is the permittivity (dielectric constant) of a vacuum.

The van der Waals energy represents the short-range energy component associated with atomic interactions and is commonly described by the 12-6 Lennard-Jones (LJ) potentials (Lennard-Jones, 1924b; a):

$$E_{VDW} = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right]$$
 1.4

The r_{ij} , σ , and ε , are the separation distance between two atoms, distance at which potential between particle is zero, and the depth of the potential energy well, respectively. The $1/r^{12}$ represents Pauli repulsion at short distance (overlapping of atoms) and $1/r^6$ terms represents the London dispersion energy at longer separations.

Bonded interactions — The summation of the energies associated with bond stretching (two-body), angle bending (three-body) and torsion (four-body) represents the total energy of the bonded components (i.e. E_{bonded}):

$$E_{bonded} = E_{bond \ stretch} + E_{Angle \ bend} + E_{Torsion}$$
1.5

The energy force field uses either harmonic oscillator potential (equation 1.6) or Morse potential (equation 1.7) to model the bond stretching terms. The Morse potential is more realistic in modelling covalent bonds as it could potentially allow for bond breaking.

$$E_{bond \ stretch} = k_1 (r - r_0)^2 \tag{1.6}$$

Where *r* is the distance between bonded atoms, r_o is the equilibrium bond distance, and k_I is an empirical force constant that can be obtained from the vibrational spectrum.

$$E_{Morse} = D_o \left(1 - e^{(1 - \alpha(r - r_o))} \right)^2$$
 1.7

Where D_o is equilibrium dissociation energy while the parameter α controls the 'width' of the potential well.

The angle bend ($E_{Angle bend}$) component of three sequentially bonded atoms is described by a harmonic potential (Equation 1.8).

$$E_{Angle\ bend} = k_2 (\theta - \theta_0)^2$$
1.8

The k_2 , θ , and θ_0 represents force constant, the measured angle, and the equilibrium bond angle, respectively.

The $E_{Torsion}$ term for dihedral interaction can be computed from the dihedral angle φ and harmonic constant k_3 .(Equation 1.9).

$$E_{Torsion} = k_3 (1 + \cos 3\varphi)$$
 1.9

Depending on the force field, it can also contain information for the rest of the terms in E_{bonded} —improper torsional terms, and cross terms. The improper torsional terms maintain the planarity of the aromatic rings while the cross terms describe the coupling of internal variables.

Overall, for this computational study, E_{Total} can be decomposed into:

$$E_{Total} = E_{Coul} + E_{VDW} + E_{Bond \ stretch} + E_{Angle \ bend} + E_{Torsion}$$
2.0

Arrangement of Pyocyanin in the Interlayer of Montmorillonite

To build pyocyanin–montmorillonite complexes, it was necessary to first determine the most thermodynamically favourable arrangement of pyocyanin in the interlayer of montmorillonite. An earlier study suggests that one layer of pyocyanin is oriented almost parallel to the basal surface but the arrangement of interlayer adsorbed pyocyanin is not clear (Fashina and Deng, 2022). To determine the most favourable arrangement, three types of possible arrangements were investigated using a 2x5x2 supercell. The pyocyanin molecules were arranged:

- 1. Tail-to-head the methyl group of one pyocyanin points to the hydroxyl group of the next pyocyanin (Fig. S1a),
- 2. Head-to-head the methyl or hydroxyl group of one pyocyanin molecule faces the methyl or hydroxyl group of the next molecule (Fig. S1b), and
- 3. Random the methyl group points towards the *x*, *y* and *z*-directions of the basal surface (Fig. S1c).

Fig. S1. Three arrangements of the pyocyanin in the interlayer of Namontmorillonite.

Parameter	Tail-Head	Head-Head	Random
a	10.36 ± 0.01	10.36 ± 0.01	10.36 ± 0.01
b	44.95 ± 0.05	44.93 ± 0.06	44.94 ± 0.05
С	25.99 ± 0.08	26.19 ± 0.1	26.022 ± 0.09
α	90	90	90
β	90	90	90
γ	90	90	90
PE (kcal/mol)	-197074.53 ±25	-197043.99 ±24	-197056.13±25

Table S1. The Potential Energy for Pyocyanin as a Function of type of Arrangement

Assignment of Forcefield Parameters

Table S2. Forcefield Atom Types, Partial Atomic Charges, and Lennard-Jones Parameters Used for MD Simulations

Forcefield	Species	Atom	Charge (e)	3	σ (Å)
		Туре		(kcal/mol)	
SPC	SPC water	h*	0.4100		
	hydrogen				
	SPC water oxygen	0*	-0.8200	0.1554	3.1655
	hydroxyl hydrogen	hoc	0.4250		
	hydroxyl oxygen	ohc	-0.9500	0.1554	3.1655
	hydroxyl oxygen	ohs	-1.0808	0.1554	3.1655
	with				
	substitution				
	bridging oxygen	ob	-1.0500	0.1554	3.1655
Clayff	bridging oxygen	obos	-1.1808	0.1554	3.1655
	with				
	octahedral				
	substitution				
	tetrahedral silicon	st	2.1000	1.8405 x	3.3020
				10-6	
	octahedral	ao	1.5750	1.3298 x	4.2712
	aluminium			10-6	
	octahedral	mgo	1.3600	9.0298 x	5.2643
	magnesium			10-7	
	aqueous sodium	Na	1.0	0.1301	2.3500

	ion				
	Oxygen bonded to	oh	-0.3430	0.2280	2.8598
	Н				
	Hydrogen bonded	ho	0.3870		
CVFF	to O				
$(PYOH^{+})$	Sp2 N sp2	np	-0.1830, -0.2930 ^a	0.1669	3.5012
	aromatic				
	Sp2 C sp2	ср	0.147 ^b , -0.063,	0.1479	3.6170
	aromatic		0.067°		
	Sp3 C methyl	c3	-0.1530	0.0389	3.8754
	group				
	Hydrogen bonded	h	0.1370	0.0380	2.4499
	to				
	carbonyl oxygen	0'	-0.3586	0.2280	2.8598
	Sp2 N sp2	np	-0.2069, -0.3169 ^a	0.1669	3.5012
	aromatic	1			
CVFF	Sp2 C sp2	ср	0.1231 ^b , -0.0869,	0.1479	3.6170
(PYO)	aromatic		0.041°		
	Sp3 C methyl	c3	-0.1769	0.0389	3.8754
	group				
	Hydrogen bonded	h	0.1131	0.0380	2.4499
	to C				
a = methyl sul	b stituted N; $b = C$ in the	e pyraz	ine ring; and $c = carbo$	onyl C	

	Harm	k_1	r _o				
Forcefield	Species	s i Species			j	(kcal/mol Å)	(Å)
SPC	0*			h*		553.9350	1.0000
Clayff	ohc			hoc		553.9350	1.0000
	ohs		hoc			553.9350	1.0000
	oh			cp		384.0000	1.3700
	o'			ср		297.4852	1.3300
	oh			ho		540.6336	0.9600
CVFF	np		ср			560.0000	1.2600
	np			c3		336.8000	1.4750
	ср			cp		480.0000	1.3400
	c3			h		340.6175	1.1050
	ср		h			363.4164	1.0800
	Harmo	k_2	θ_o				
	Species <i>i</i>	Speci	es j		Species k		
SPC	h*		0*		h*	45.7696	109.47
	ср		oh		ho	50.0000	109.00
	ср	np			ср	75.1000	114.00
CVFF	ср		np cp		c3	75.0000	120.00
	np				ср	90.0000	120.00
	ср		cp		ср	90.0000	120.00
	np		c3		h	80.0000	109.50
	h		c3		h	39.5000	106.40
	ср		ср		h	37.0000	120.00
	oh		cp		ср	60.0000	120.00
	o'		cp		ср	65.0000	120.00
	Torsion			<i>k</i> ₃	φ		

Table S3. Bond Parameters for the Clayff, SPC, and CVFF Force Field

	Species <i>i</i>	Species j	Species k	Species <i>l</i>		
	ho	oh	ср	ср	0.375	180
	ср	np	ср	ср	1	180
	c3	np	ср	ср	1	180
	ср	np	c3	h	0	180
	np	ср	ср	np	3	180
	np	ср	ср	ср	3	180
CVFF	ср	ср	ср	ср	3	180
	np	ср	ср	h	3	180
	ср	ср	ср	h	3	180
	oh	ср	ср	np	3	180
	oh	ср	ср	ср	3	180
	0'	ср	ср	np	3	180
	0'	ср	ср	ср	3	180
	h	ср	ср	h	3	180
	oh	ср	ср	h	3	180
	0'	ср	ср	h	3	180
		Out-of-pl	ane CVFF		k_4	X
	c3	np	ср	ср	0.37	180
	np	ср	ср	ср	0.37	180
CVFF	ср	ср	ср	h	0.37	180
	oh	ср	ср	ср	0	180
	o'	ср	ср	ср	0	180

	Clay component					Pyocyanin						
	Na		0*		h*	C	N		oh or o'		ho	
DM	1.67	&	-		-	-	-		-		-	
	0.52*											
HM	3.75		2.61		2.96 & 1.98	-	-		-		-	
DMPH	1.10		-		-	2.94	3.22		2.63		1.69	
HMPH	3.87	&	2.65	&	2.81 & 1.63	2.65	3.87	&	2.52	&	1.63	&
	3.19†		1.93				3.19		1.93†		2.81	
DMP	1.26		-		-	3.37	3.37		3.37		-	
HMP	3.80	&	2.65	&	2.65 & 1.61	2.94	3.96		4.87	&	-	
	2.98		1.98						2.95			
Na = interlayer sodium; $o^* = oxygen of water; h^* = hydrogen of water; C = C of methyl; N = nitro conv oh = meton to down on PVOU+ of = owngen$												

nitrogen; oh = protonated oxygen; ho = proton on PYOH⁺;o' = oxygen Table S4. The atomic profile distances (Å) from the basal (ob) oxygens

The d-spacing of a layer of montmorillonite at various moisture conditions

Fig. S2. XRD patterns of montmorillonite at room humidity (55%) and 0% humidity.