Supporting Information

Characteristics and long-term kinetics of an azobenzene derivative and a donor-acceptor Stenhouse adduct as orthogonal photoswitches

Tanja Schmitt,^a Christian Huck,^a Nils Oberhof,^b Li-Yun Hsu,^c Eva Blasco^c Andreas Dreuw^b and Petra Tegeder^{*a}

- ^a Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- ^b Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
- ^c Institute for Molecular System Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany

Table of contents

1. Synthesis	S	2
2. Sample p	preparation	2
2.1. UV	V/VIS absorption measurements	2
2.2. IR	absorption measurements	2
3. UV/VIS a	absorption data	3
4. IR absorp	ption data1	2
5. Theory		7
6. Referenc	ces	8

1. Synthesis

The synthesis and purification of Azo and DASA are described elsewhere.¹

2. Sample preparation

For sample preparation, toluene (Uvasol grade), acetonitrile (Uvasol grade), toluene-d₈ (99.6 % D) and acetonitrile-d₃ (\geq 99.8 % D) were purchased from Merck KGaA. All chemicals were used without further purification.

2.1. UV/VIS absorption measurements

Azo (1.3 mg, 2.0 μ mol) was dissolved in toluene (650 μ l) and sonicated for several minutes to ensure a homogeneous stock solution. Part of the stock solution (30 μ l) was subsequently further diluted with toluene (3.000 ml).

DASA (1.0 mg, 3.3 μ mol) was dissolved in toluene (1.000 ml) and sonicated for several minutes to ensure a homogeneous stock solution. Part of the stock solution (20 μ l) was subsequently further diluted with toluene (3.000 ml).

For the equimolar mixtures of Azo and DASA, part of the above specified Azo stock solution (21 μ l) and DASA stock solution (20 μ l) was mixed and further diluted with toluene (2980 μ l).

2.2. IR absorption measurements

DASA (1.0 mg, 3.3 μ mol) was dissolved in toluene or acetonitrile (200 μ l) and sonicated for several minutes to ensure a homogeneous solution.

3. UV/VIS absorption data

Supplementary Figure S1 Shift of the absorption spectra of Azo and DASA in different environments due to solvatochromism.

Supplementary Figure S2 Hypsochromic shifts of the absorption maxima of (a) *Z*-Azo and *E*-Azo as well as (b) *Z*-DASA upon increasing temperature.

Supplementary Figure S3 Temporal evolution of the absorption of *E*-Azo at its maximum absorption wavelength in toluene upon *E*-to-*Z* photoisomerisation and their respective monoexponential fit curves. The photoisomerisation of a (a) pure Azo solution and an (b) equimolar Azo+DASA solution using blue light for orthogonal switching (434 nm) as well as of a (c) pure Azo solution and an (b) equimolar Azo+DASA solution using green light for simultaneous switching wavelength (507 nm) is studied.

The effective cross section σ is calculated based on the lifetime τ and the photon dose n_p per time t and area A according to equation 1. The photon dose n_p for a circular spot is thereby determined according to equation 2 using the Planck's quantum of action h, the speed of light in vacuum c_{vac} , the applied wavelength λ and the radius r.

$$\sigma = \frac{1}{\tau \, n_p} \tag{1}$$

$$n_p(t,A) = \frac{P(t)}{E_p A} = \frac{P(t) \lambda}{h c_{vac} \pi r^2}$$
(2)

Supplementary Table S1 Lifetimes τ of Azo in toluene upon photochemically initiated *E*-to-*Z* isomerisation, applied photon doses n_p and wavelengths λ for orthogonally addressing Azo or simultaneously addressing Azo and DASA as well as the resulting effective cross sections σ of Azo.

	Azo orthogonally	Azo+DASA	Azo	Azo+DASA
		orthogonally	simultaneously	simultaneously
τ [s]	22.41 ± 0.10	17.20 ± 0.09	14.39 ± 0.05	7.95 ± 0.03
n _p [10 ¹⁵ s ⁻¹ cm ⁻²]	8.6 ± 0.4	8.6 ± 0.4	72 ± 4	72 ± 4
λ [nm]	434	434	507	507
σ [10 ⁻¹⁸ cm ²]	5.21 ± 0.26	6.79 ± 0.34	0.97 ± 0.05	1.74 ± 0.09

Supplementary Table S2 Determined lifetimes of Azo in toluene upon thermally activated Z-to-E backswitching in different environments regarding DASA.

Temperature [°C]	Lifetime [s]			
	Azo	Azo+Z-DASA	Azo+DASA	
			simultaneous thermal	
			backswitching	
20	-	10121.5 ± 12.1	11608.3 ± 12.7	
25	-	-	6281.4 ± 5.7	
30	2994.2 ± 1.9	3423.1 ± 17.9	3507.1 ± 4.2	
35	-	1866.3 ± 2.0	1951.9 ± 2.2	
40	1105.9 ± 1.9	1178.8 ± 0.4	1106.2 ± 0.9	
45	-	679.7 ± 0.5	667.0 ± 0.8	
50	382.6 ± 0.7	-	-	
60	138.8 ± 0.3	-	-	

Supplementary Figure S4 (a) Temporal evolution of the absorption of *E*-Azo at its maximum absorption wavelength upon thermally activated *Z*-to-*E* isomerisation in the presence of *Z*-DASA within an equimolar Azo+DASA mixture in toluene at different temperatures with the respective monoexponential fit curves. Using the fitted lifetimes, the corresponding rate constants are calculated and an (b) Arrhenius plot is applied to extract the activation energy of the *Z*-to-*E* isomerisation of Azo.

Supplementary Figure S5 (a) Temporal evolution of the absorption of *E*-Azo at its maximum absorption wavelength upon thermally activated *Z*-to-*E* isomerisation in an equimolar Azo+DASA mixture in toluene with simultaneous closed-to-linear isomerisation of DASA at different temperatures with the respective monoexponential fit curves. Using the fitted lifetimes, the corresponding rate constants are calculated and an (b) Arrhenius plot is applied to extract the activation energy of the thermally initiated *Z*-to-*E* isomerisation of Azo.

Supplementary Figure S6 Temporal evolution of the absorption of *Z*-DASA at 571 nm and of *E*-DASA at 625 nm at 0 °C. (a) Since the rise of the absorption feature of *E*-DASA is orders of magnitude faster than the decay time, the decay of the *Z*-DASA absorption feature is pseudo monoexponential and can be used to describe the ring closure and opening which is verified by the same decay times fitted by monoexponential fit curves to the decay of (b) *Z*-DASA and (c) *E*-DASA.

Temperature [°C]	Lifetime [s]				
	DASA	DASA+E-Azo	DASA+Azo		
			simultaneous		
			switching		
0	39.43 ± 0.11	-	-		
10	30.87 ± 0.12	25.17 ± 0.05	-		
20	22.87 ± 0.09	17.68 ± 0.03	17.91 ± 0.02		
25	-	-	15.39 ± 0.02		
30	18.97 ± 0.06	16.59 ± 0.04	13.00 ± 0.02		
35	-	-	11.23 ± 0.01		
40	17.17 ± 0.04	12.75 ± 0.02	10.15 ± 0.03		
45	-	-	8.87 ± 0.03		

Supplementary Table S3 Determined lifetimes of DASA in toluene upon thermally activated linear-toclosed switching in different environments regarding Azo.

Supplementary Figure S7 (a) Temporal evolution of the absorption of *Z*-DASA at its maximum absorption wavelength upon linear-to-closed switching in an equimolar Azo+DASA mixture in toluene in the presence of *E*-Azo at different temperatures with the respective monoexponential fit curves. Using the fitted lifetimes, the corresponding rate constants are calculated and an (b) Arrhenius plot is applied to extract the activation energy of the thermally activated ring closure of DASA.

Supplementary Figure S8 (a) Temporal evolution of the absorption of *Z*-DASA at its maximum absorption wavelength upon linear-to-closed switching in an equimolar DASA+Azo mixture in toluene while Azo undergoes simultaneous *E*-to-*Z* isomerisation at different temperatures with the respective monoexponential fit curves. Using the fitted lifetimes, the corresponding rate constants are calculated and an (b) Arrhenius plot is applied to extract the activation energy of the thermally activated ring closure of DASA.

Supplementary Table S4 Effective cross sections σ of DASA in toluene upon open-to-closed isomerisation
based on the lifetimes τ of DASA of Supplementary Table 3 , applied photon dose n_p and wavelength λ for
orthogonally addressing DASA or simultaneously addressing DASA and Azo.

Temperature [°C]	Effective cross section σ [10 ⁻¹⁸ cm ²]				
	Based on λ = 594 nm and n _p = (20 ± 1) · 10 ¹⁵ s ⁻¹ cm ⁻² or				
	λ = 507 nm and n_p = (72 ± 4) \cdot 10 15 s $^{-1}$ cm $^{-2}$ for simultaneous switching				
	DASA	DASA+E-Azo	DASA+Azo		
			simultaneous		
			switching		
0	1.24 ± 0.06	-	-		
10	1.58 ± 0.08	1.94 ± 0.10	-		
20	2.14 ± 0.11	2.77 ± 0.14	0.77 ± 0.04		
25	-	-	0.90 ± 0.05		
30	2.58 ± 0.13	2.95 ± 0.15	1.07 ± 0.05		
35	-	-	1.23 ± 0.06		
40	2.85 ± 0.14	3.83 ± 0.19	1.36 ± 0.07		
45	-	-	1.56 ± 0.08		

Supplementary Figure S9 (a) Temporal evolution of the absorption of *Z*-DASA at its maximum absorption wavelength upon closed-to-linear backswitching of DASA in toluene at different temperatures with the respective monoexponential fit curves. Using the fitted lifetimes, the corresponding rate constants are calculated and an (b) Arrhenius plot is applied to extract the activation energy for the thermally activated ring opening of DASA.

Supplementary Figure S10 (a) Temporal evolution of the absorption of *Z*-DASA at its maximum absorption wavelength upon closed-to-linear backswitching of DASA in an equimolar DASA+Azo mixture in toluene while *E*-Azo is present at different temperatures with the respective monoexponential fit curves. Using the fitted lifetimes, the corresponding rate constants are calculated and an (b) Arrhenius plot is applied to extract the activation energy for the thermally activated ring opening of DASA.

Supplementary Figure S11 (a) Temporal evolution of the first 1000 s of the absorption of *Z*-DASA at its maximum absorption wavelength upon closed-to-linear backswitching of DASA in an equimolar Azo+DASA mixture in toluene at different temperatures with the respective monoexponential fit curves. Using the fitted lifetimes, the corresponding rate constants are calculated and an (b) Arrhenius plot is applied to extract the activation energy for the thermally activated ring opening of DASA.

Temperature [°C]	Lifetime [s]			
	DASA	DASA+ <i>E</i> -Azo	DASA+Azo	
			simultaneous	
			switching	
0	518.63 ± 0.26	-	-	
10	202.17 ± 0.10	218.98 ± 0.14	-	
20	99.71 ± 0.06	98.76 ± 0.07	94.97 ± 0.21	
25	-	-	68.51 ± 0.15	
30	51.53 ± 0.05	47.15 ± 0.04	48.58 ± 0.09	
35	-	-	34.09 ± 0.14	
40	31.53 ± 0.04	27.97 ± 0.03	23.78 ± 0.11	
45	-	-	19.06 ± 0.07	

Supplementary Table S5 Determined lifetimes of DASA in toluene upon thermally activated closed-toopen isomerisation in different environments regarding Azo.

4. IR absorption data

Supplementary Figure S12 IR absorption spectra calculated by density functional theory (DFT) using the B3LYP functional, the 6-311G(d,p) basis set, a scaling factor of 0.9682 and applying a FWHM of 5 cm⁻¹.

Supplementary Figure S13 Comparison of the IR absorption spectra of *Z*-DASA in different environments and the calculated absorption bands considering a scaling factor of 0.9682. Small shifts are observed but the absorption bands can be related to each other in order to assign the observed modes to the underlying vibrations.

Supplementary Figure S14 (a) Changes in IR absorption upon closed-to-linear backswitching of DASA in acetonitrile- d_3 at room temperature. IR absorption bands related to the closed zwitterionic C' isomer, e.g. at (b) 1616 cm⁻¹, disappear while new absorption bands of the linear *Z*-DASA isomer, e.g. at (c) 1501 cm⁻¹, emerge.

Supplementary Figure S15 (a) Changes in IR absorption upon linear-to-closed switching of DASA in toluene-d₈ at room temperature. IR absorption bands related to the linear species, e.g. at (b) 1487 cm⁻¹, disappear while new absorption bands of the closed isomers C and C', e.g. at (c) 1576 cm⁻¹, emerge.

Supplementary Figure S16 (a) Changes in IR absorption upon closed-to-linear backswitching of DASA in toluene-d₈. IR absorption bands related to the closed zwitterionic isomer C', e.g. at (b) 1576 cm⁻¹, and new absorption bands of the linear *Z*-DASA isomer, e.g. at (c) 1487 cm⁻¹, grow linearly in intensity.

Supplementary Figure S17 Complete switching scheme of the (a) *E*-to-*Z*, (b) photoinitiated *Z*-to-*E* and (c) thermally activated *Z*-to-*E* switching of Azo including the determined lifetimes and activation energies found for pure Azo solutions and in an equimolar mixture of Azo+DASA in different environments, namely toluene solutions, acetonitrile solutions and thin PMMA blend films. The lifetimes in the picosecond range were determined within our former study of the ultrafast kinetics² while the longer lifetimes and activation energies are provided by this study.

5. Theory

The optimised geometries shown in **Fehler! Verweisquelle konnte nicht gefunden werden.** demonstrate the good agreement between the reaction coordinates along which the isomerisation of DASA isomer B to DASA isomer B' happens and along which the ring closure from DASA isomer B' to DASA isomer C takes place.

The calculated geometries of the DASA isomers and transition states are listed in the

Supplementary Table **S1** - Supplementary Table Supplementary **Table 7** whereas the Azo isomers and transition states are listed in the Supplementary Table 8 - Supplementary Table Supplementary **Table 10**.

Supplementary Figure 18 Relative energies of all explicitly considered species relative to the DASA isomer A.

No.	Atom	x	y y	Z		
1	С	4.9130533446	-0.0687760176	-0.0548768356		
2	N	4.3449725069	1.1760882271	0.1017562016		
3	С	2.9659589075	1.4206729865	0.1647477830		
4	С	2.0960974368	0.2696358663	0.0436331581		
5	С	2.6588877076	-1.0336352853	-0.1213431245		
6	Ν	4.0445950318	-1.1410160054	-0.1627327303		
7	С	0.7082235339	0.5531667153	0.1032257330		
8	С	-0.4378814633	-0.2116466589	0.0122757004		
9	0	-0.5027944291	-1.5543859874	-0.1731904304		
10	0	2.5688880722	2.5726314345	0.3134040378		
11	0	2.0145246238	-2.0910131763	-0.2297494757		
12	С	5.2763885885	2.2964294761	0.2074342028		
13	С	4.6089078688	-2.4784956811	-0.3350742254		
14	0	6.1230887190	-0.2078459566	-0.0979837325		
15	С	-1.6719362484	0.4624090811	0.1106983734		
16	С	-2.9063388287	-0.1497767826	0.0239386155		
17	С	-4.0609687754	0.6327430309	0.1325954662		
18	Ν	-5.3055095284	0.2218655874	0.0549551046		
19	С	-5.6540102739	-1.1856080549	-0.1668591626		
20	С	-5.6834013237	-1.9782216414	1.1343688078		
21	С	-6.4149102021	1.1745112257	0.1929751605		
22	С	-6.9570461213	1.6242610179	-1.1570991606		
23	Н	0.4250655726	-1.8931918410	-0.2122279496		
24	Н	-7.7921758297	2.3116683273	-1.0051174272		
25	Н	-7.3176634726	0.7770337946	-1.7457381783		
26	Н	-6.1823849348	2.1413423462	-1.7286593813		
27	Н	-7.1927982031	0.6852294193	0.7842533516		
28	Н	-6.0532768195	2.0276368615	0.7689206867		
29	Н	-5.9563795804	-3.0149184113	0.9256394277		
30	Н	-4.7053840679	-1.9719452865	1.6212972835		
31	Н	-6.4190693549	-1.5624362473	1.8273620450		
32	н	-6.6329280147	-1.2012628926	-0.6486453908		
33	Н	-4.9421429862	-1.6124852332	-0.8755207283		
34	Н	-3.9417673856	1.7008794064	0.3019332188		
35	Н	-2.9626129641	-1.2208635374	-0.1241970629		
36	Н	-1.6298683288	1.5373748158	0.2616252376		
37	Н	0.5104651704	1.6101787001	0.2483334058		
38	Н	5.9088828147	2.1785726706	1.0881213645		
39	Н	4.6884968911	3.2047176163	0.2921633455		
40	Н	5.6890460171	-2.3828156950	-0.3753379346		
41	Н	4.2378968159	-2.9196596516	-1.2601165728		
42	Н	4.3222932302	-3.1162397440	0.5016212522		
43	Н	5.9067922839	2.3413992272	-0.6809497595		
	Absolute energy = 1049.42790355860 Eh					

Supplementary Table S1 Optimised geometry of the DASA isomer A using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

No.	Atom	x	y	Z	
1	С	4.9455644884	0.2306075196	0.0888037260	
2	N	4.2842884171	1.4235241609	0.2790783773	
3	С	2.8904851631	1.5737450772	0.2601058304	
4	С	2.1105572849	0.3807978876	0.0053761504	
5	С	2.7716891207	-0.8705198806	-0.1971325985	
6	N	4.1619418064	-0.8838904865	-0.1518056616	
7	С	0.7049535008	0.5743221568	-0.0056776204	
8	С	-0.3821143501	-0.2417037802	-0.2291021968	
9	0	-0.3370412502	-1.5721166268	-0.5296198864	
10	0	2.4065572360	2.6854974763	0.4551683807	
11	0	2.2121675846	-1.9598021326	-0.4071486674	
12	С	5.1262357554	2.5906946416	0.5274756756	
13	С	4.8257647334	-2.1695829528	-0.3594362369	
14	0	6.1622404502	0.1712254418	0.1315896410	
15	С	-1.6976904637	0.2784417888	-0.1685926988	
16	С	-2.1355701955	1.5575091712	0.1091520655	
17	С	-3.5135710513	1.7992084847	0.1014953870	
18	N	-4.1193105189	2.9368546594	0.3522722099	
19	С	-3.3844103698	4.1638853250	0.6761551730	
20	С	-2.9392048493	4.9054269831	-0.5784558513	
21	С	-5.5851764435	3.0216177260	0.3105352938	
22	С	-6.2064081720	2.8893194878	1.6942500726	
23	Н	0.6103732523	-1.8473441302	-0.5121247904	
24	Н	-7.2925283169	2.9774745457	1.6176341101	
25	Н	-5.8499554736	3.6710058422	2.3696818518	
26	Н	-5.9672845983	1.9162768026	2.1303233640	
27	Н	-5.8440670515	3.9798728585	-0.1461792512	
28	Н	-5.9461056290	2.2345955247	-0.3533713562	
29	Н	-2.4120686953	5.8196399258	-0.2976589588	
30	Н	-2.2658624360	4.2905086120	-1.1804481894	
31	Н	-3.7999327371	5.1797047073	-1.1935040432	
32	Н	-4.0492356058	4.7873085476	1.2760809693	
33	Н	-2.5338209712	3.9056190958	1.3094200754	
34	Н	-4.1770991224	0.9707517777	-0.1362737888	
35	Н	-1.4420638046	2.3599243142	0.3281122517	
36	Н	-2.4669150989	-0.4650216961	-0.3765884201	
37	Н	0.4472403076	1.6063869199	0.2051673371	
38	Н	5.6871052739	2.4619642542	1.4542343975	
39	Н	4.4735685154	3.4538496156	0.6080597179	
40	Н	5.8974339734	-2.0006958882	-0.3353646508	
41	Н	4.5332590607	-2.5838430677	-1.3240376974	
42	Н	4.5416359078	-2.8695480404	0.4270263355	
43	Н	5.8269653727	2.7277773505	-0.2962458292	
Absolute energy =1049.41982182549 Eh					

Supplementary Table 2 Optimised geometry of the DASA isomer B using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

			0110(u)p) busis seti	
No.	Atom	x	у	z
1	С	4.2134615330	0.4283503592	0.7950128360
2	Ν	3.3491024929	1.4809081837	1.0411626205
3	С	2.0317665463	1.5414289252	0.6148734598
4	С	1.5321298746	0.3736808744	-0.1530905874
5	С	2.4335989550	-0.7542974651	-0.4071146996
6	Ν	3.7155051562	-0.6573134149	0.0761020108
7	С	0.2382125237	0.4690379686	-0.5580825137
8	С	-0.6929260242	-0.3894750322	-1.2631851583
9	0	-0.3836271981	-1.6348850899	-1.6847033577
10	0	1.3392549275	2.5073765983	0.8713814291
11	0	2.1163025007	-1.7678745959	-1.0232319599
12	С	3.9046579248	2.5939962509	1.8135322251
13	С	4.6120285440	-1.7866475611	-0.1844342960
14	0	5.3552247204	0.4553597602	1.1945425883
15	С	-1.9488898837	0.0748535461	-1.4687588962
16	С	-2.4468057612	1.4277135048	-1.1400605836
17	С	-3.1798733306	1.6716014836	-0.0372422905
18	N	-3.7437701485	2.8573308385	0.3569755019
19	С	-3.4875280961	4.0613209809	-0.4216772624
20	С	-4.3885785783	4.1681448800	-1.6488680730
21	С	-4.0007129281	3.0241312079	1.7842297787
22	С	-2.7547003494	3.3854949200	2.5908098191
23	Н	0.5606734573	-1.8130570828	-1.4855335534
24	Н	-2.9985402237	3.4882094169	3.6516591047
25	Н	-2.3263468151	4.3322187694	2.2489419505
26	Н	-1.9901869584	2.6094747220	2.4863971207
27	Н	-4.7671916182	3.7954334155	1.9028298862
28	Н	-4.4309979804	2.0902545617	2.1577265936
29	Н	-4.1557117161	5.0748925037	-2.2138040891
30	Н	-4.2602361027	3.3122134705	-2.3156018229
31	Н	-5.4380880677	4.2100846968	-1.3459800749
32	Н	-3.6606391570	4.9202600489	0.2307231506
33	Н	-2.4294228383	4.1010589985	-0.7182613393
34	Н	-3.3752397830	0.8525906910	0.6531994231
35	Н	-2.2247475517	2.2197715450	-1.8503958899
36	Н	-2.6236663707	-0.6246121289	-1.9639114317
37	Н	-0.2287749202	1.4049543980	-0.2660733874
38	Н	4.2619072273	2.2303591743	2.7764598809
39	Н	3.1127526304	3.3210634158	1.9604921851
40	Н	5.5759069111	-1.5587153216	0.2573935128
41	Н	4.7169159403	-1.9303288818	-1.2595712685
42	Н	4.1989924416	-2.6910228400	0.2617764800
43	Н	4.7323331053	3.0480979059	1.2689866684
	Absolu	te energy = 1049.395	65425714 Eh	•

Supplementary Table 3 Optimised geometry of the transition state TS1 using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

No.	Atom	x	y	Z	
1	С	5.1114206276	0.0125973088	-0.2090774504	
2	N	4.5590038141	1.2658047068	-0.3527283329	
3	С	3.1838999723	1.5391435382	-0.3096841874	
4	С	2.3046048759	0.4132033380	-0.1169686892	
5	С	2.8466823928	-0.8938073816	0.0431453446	
6	N	4.2308922437	-1.0346350114	-0.0102867752	
7	С	0.9167042819	0.7359819006	-0.0349682879	
8	С	-0.2331168301	-0.0208561147	0.0113976533	
9	0	-0.2981118212	-1.3695367964	-0.1337339893	
10	0	2.8021360568	2.7037262471	-0.4293084067	
11	0	2.1872560446	-1.9331998710	0.2326142326	
12	С	5.5009810904	2.3628025493	-0.5559329908	
13	С	4.7755623743	-2.3804668101	0.1567424956	
14	0	6.3190763368	-0.1527782994	-0.2553086109	
15	С	-1.5053666397	0.6187201769	0.0944132901	
16	С	-1.7809984956	1.8370315884	0.6608747131	
17	С	-0.8827857552	2.4628739428	1.5557545631	
18	N	-0.9119632430	3.7108179427	1.9411861435	
19	С	-1.8479635195	4.6929123949	1.3814638285	
20	С	-3.1353677644	4.7724132935	2.1928663640	
21	С	0.0529805580	4.1941834021	2.9409433145	
22	С	1.2910902600	4.7824764672	2.2780065928	
23	Н	0.6239014876	-1.7177821762	-0.0429331712	
24	Н	1.9891008435	5.1241841515	3.0452774988	
25	Н	1.0353142035	5.6360786481	1.6453140775	
26	Н	1.7919038324	4.0320842285	1.6605032843	
27	Н	-0.4588321774	4.9357660593	3.5577939701	
28	Н	0.3153505544	3.3541114526	3.5852098111	
29	Н	-3.7884990021	5.5372964770	1.7677790842	
30	Н	-3.6683695474	3.8187825158	2.1818885609	
31	Н	-2.9262213285	5.0396336200	3.2315908594	
32	Н	-1.3351384437	5.6564245343	1.3764616675	
33	Н	-2.0468303811	4.4247003030	0.3426171856	
34	Н	-0.1133444252	1.8525804020	2.0221310838	
35	Н	-2.7468669327	2.2923146395	0.4749340405	
36	Н	-2.3320074633	0.0646819947	-0.3461402021	
37	Н	0.7481062847	1.8040999079	-0.1015663521	
38	Н	6.1724682544	2.4450073945	0.2995595483	
39	Н	4.9221385668	3.2747903748	-0.6609323666	
40	Н	5.8579633554	-2.3094011708	0.1253878071	
41	Н	4.4224762323	-3.0303002332	-0.6447057439	
42	Н	4.4549441422	-2.7929737706	1.1132676200	
43	Н	6.0912450835	2.1885021345	-1.4560890783	
Absolute energy = 1049.41711599953 Eh					

Supplementary Table 4 Optimised geometry of the DASA isomer B' using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

No.	Atom	x	y y	Z	
1	С	2.7512993700	1.3850583835	-0.0348497181	
2	N	1.6701272678	1.7560114152	-0.8014731947	
3	С	0.5742541391	0.9303232812	-1.0917481591	
4	С	0.5855408542	-0.3838198059	-0.4992130053	
5	С	1.6867060019	-0.7686753647	0.2397585816	
6	N	2.7355911244	0.0913074361	0.4595238384	
7	С	-0.6101220927	-1.1956463143	-0.7131668788	
8	С	-0.6934334200	-2.6132172247	-0.6186946771	
9	0	0.2704617892	-3.4054008297	-0.3695374549	
10	0	-0.3322841326	1.3527855316	-1.8044497420	
11	0	1.8438787318	-1.9407161337	0.7876510134	
12	С	1.7014825404	3.1134805925	-1.3396217186	
13	С	3.8890605544	-0.3801675927	1.2276857479	
14	0	3.6726013667	2.1521956133	0.1838258688	
15	С	-2.0712478934	-3.0764018173	-0.6991759170	
16	С	-2.9505269199	-2.1988531643	-0.1848551024	
17	С	-2.3750308422	-1.0557835921	0.5262585121	
18	N	-2.9998567559	0.1273796193	0.5718505870	
19	С	-3.8227691845	0.5952490408	-0.5412084252	
20	С	-5.3160747844	0.5732262014	-0.2342214934	
21	С	-2.7038945662	1.0784111697	1.6426207351	
22	С	-1.4758508490	1.9399446309	1.3777909887	
23	Н	1.2091878778	-2.6356226341	0.3048388100	
24	Н	-1.3638465879	2.6830899169	2.1711047371	
25	Н	-1.5576153810	2.4641820417	0.4227213334	
26	Н	-0.5729310988	1.3249689537	1.3543876839	
27	Н	-3.5890806532	1.7066776859	1.7682262979	
28	Н	-2.5839104732	0.5140809101	2.5705557464	
29	Н	-5.8758723024	0.9535442062	-1.0922629379	
30	Н	-5.6579201639	-0.4427840950	-0.0214175354	
31	Н	-5.5527130473	1.2028883355	0.6273605660	
32	Н	-3.5025389927	1.6105543279	-0.7973577399	
33	Н	-3.6051235440	-0.0317496583	-1.4100471469	
34	Н	-1.7848389403	-1.2826708738	1.4084720943	
35	Н	-4.0295894452	-2.3056766265	-0.2541044647	
36	Н	-2.3310424147	-4.0558555092	-1.0835684754	
37	Н	-1.2714733449	-0.7489588009	-1.4437093081	
38	Н	1.7652235805	3.8349382721	-0.5248164741	
39	Н	0.7845251225	3.2626608945	-1.9007412861	
40	Н	4.6202470269	0.4213541716	1.2424639739	
41	Н	4.3122968493	-1.2645959449	0.7526794443	
42	Н	3.5882580159	-0.6262404031	2.2460110605	
43	Н	2.5643960376	3.2372602939	-1.9948944055	
Absolute energy = 1049.39375489300 Eh					

Supplementary Table 5 Optimised geometry of the transition state TS2 using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

No.	Atom	x	y	Z
1	С	2.6497251830	1.3340702394	-0.0451373666
2	Ν	1.5993264010	1.7317103410	-0.8431216511
3	С	0.4748168529	0.9501615784	-1.1357922969
4	С	0.4016489182	-0.3341380848	-0.4801429435
5	С	1.4829647088	-0.7514160021	0.2356104877
6	Ν	2.5732943467	0.0472767833	0.4638499648
7	С	-0.8729154324	-1.1075727176	-0.6245996894
8	С	-0.7669189991	-2.5941980518	-0.9054023940
9	0	0.2366900846	-3.1745400907	-1.2938735524
10	0	-0.3848154563	1.3764126871	-1.8982114484
11	0	1.5965478112	-1.9508978792	0.8042300208
12	С	1.7019366127	3.0722764912	-1.4153624866
13	С	3.7082965754	-0.4738313712	1.2305173331
14	0	3.5962145234	2.0659596783	0.1782552874
15	С	-2.0352308242	-3.2143368731	-0.5091521470
16	С	-2.6744118140	-2.3733930200	0.3081807017
17	С	-1.9355316293	-1.0743805010	0.5394148254
18	Ν	-2.8391864209	0.0400445888	0.6783739910
19	С	-3.4471461183	0.5164270652	-0.5579983667
20	С	-4.7564820822	1.2620139900	-0.3311945604
21	С	-2.5101215747	1.0407548830	1.6854354775
22	С	-1.4133295038	2.0514792482	1.3454732934
23	Н	1.1685493457	-2.6073050566	0.2268857936
24	Н	-1.3542859443	2.8130471466	2.1283968110
25	Н	-1.6096755716	2.5574659824	0.3963396375
26	Н	-0.4359246871	1.5673383704	1.2793203671
27	Н	-3.4303332681	1.5814612943	1.9256684288
28	Н	-2.2355676422	0.5017711889	2.5980197113
29	Н	-5.2360767648	1.4684518739	-1.2914389608
30	Н	-5.4402088997	0.6619108704	0.2761481867
31	Н	-4.6024145865	2.2203181358	0.1716078383
32	Н	-2.7563612894	1.1447414821	-1.1405316465
33	Н	-3.6551697274	-0.3659343157	-1.1743591130
34	Н	-1.3874904716	-1.1732880062	1.4841400564
35	Н	-3.6170158788	-2.5636239385	0.8111465433
36	Н	-2.3129191909	-4.2272684086	-0.7707939546
37	Н	-1.3835076391	-0.7013878795	-1.5060280948
38	Н	1.7841950954	3.8094745641	-0.6166573264
39	Н	0.8031327388	3.2484570110	-1.9976035175
40	Н	4.4609948334	0.3070971494	1.2624534947
41	Н	4.1104417069	-1.3605066651	0.7417538462
42	Н	3.3951044386	-0.7251936366	2.2433336541
43	Н	2.5816199484	3.1386006430	-2.0563141622
Absolute energy = 1049.41860847750 Eh				

Supplementary Table 6 Optimised geometry of the DASA isomer C using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

No.	Atom	x	y	Z
1	С	2.7082412240	1.2621411024	-0.1627573814
2	Ν	1.7001675983	1.7185244874	-0.9822376537
3	С	0.4773214000	1.0407032646	-1.1977349075
4	С	0.3225074407	-0.1780709714	-0.5146577179
5	С	1.3042084467	-0.6838264405	0.3560316165
6	Ν	2.4850575817	0.0692155372	0.4909622511
7	С	-0.9371966954	-0.9541212654	-0.6792423181
8	С	-0.7494814556	-2.4004170652	-1.1505483835
9	0	0.0777186594	-2.7778936216	-1.9465744256
10	0	-0.3715239965	1.5586652454	-1.9436057200
11	0	1.1923897205	-1.7323276683	1.0127363728
12	С	1.9415682226	2.9859851652	-1.6598270544
13	С	3.5155691141	-0.4529702276	1.3793147139
14	0	3.7465594097	1.8996134219	-0.0284523592
15	С	-1.7890517486	-3.2279989582	-0.4987070117
16	С	-2.4267085217	-2.5039145245	0.4174898028
17	С	-1.8487799045	-1.1194585484	0.5549105285
18	N	-2.9540208237	-0.0911102993	0.7597680481
19	С	-3.4937992577	0.4906886636	-0.5186928196
20	С	-4.7489038221	1.3121126384	-0.2970714300
21	С	-2.6256412504	0.9375800296	1.8160851350
22	С	-1.5718801113	1.9435758234	1.4090760443
23	Н	-1.4371477215	2.6388063795	2.2397258244
24	Н	-1.8663394097	2.5229985218	0.5321129650
25	Н	-0.6135550049	1.4632074721	1.2062326911
26	Н	-3.5687655581	1.4246048135	2.0633761584
27	Н	-2.3121662550	0.3630962311	2.6887689855
28	Н	-5.1607952390	1.5705314548	-1.2740023072
29	Н	-5.5077104190	0.7461046507	0.2502021489
30	Н	-4.5474549477	2.2432267708	0.2352975187
31	Н	-2.6965449325	1.0799566627	-0.9725497861
32	Н	-3.7042595819	-0.3621991796	-1.1671762835
33	Н	-1.2410804549	-1.0813312328	1.4621384195
34	Н	-3.2309128036	-2.8521350938	1.0587928342
35	Н	-1.9619430942	-4.2690404119	-0.7401855129
36	Н	-1.5006140810	-0.4921005402	-1.4945318213
37	Н	2.1094873894	3.7807040056	-0.9313544356
38	Н	1.0600811928	3.2075665295	-2.2539922961
39	Н	4.3785056176	0.2031752530	1.3216681628
40	Н	3.7943948439	-1.4616082148	1.0725919597
41	Н	3.1470297705	-0.4895052688	2.4059184293
42	Н	2.8171598313	2.9117807305	-2.3070020806
43	Н	-3.7300803727	-0.6179653223	1.1667630952
	Absolu	te energy = 1049.433	53746842 Eh	

Supplementary Table 7 Optimised geometry of the DASA isomer C' using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

No.	Atom	х	у	Z
1	С	-4.3192821955	2.9117833359	-0.0942194766
2	С	-4.1970227182	1.5302219794	0.0475945910
3	С	-3.1841620639	3.7084130376	-0.0805655452
4	С	-1.9230809553	3.1330525107	0.0628765195
5	С	-1.7988045241	1.7489747295	0.2116494965
6	С	-2.9324688313	0.9568862491	0.2031641742
7	Н	-5.2981287633	3.3604048024	-0.2105380152
8	Н	-3.2579008001	4.7852898481	-0.1846272935
9	Н	-0.8160683794	1.3113119683	0.3332341931
10	Н	-2.8510877583	-0.1178682910	0.3198493478
11	С	1.3287996934	5.7549215992	0.1154691384
12	С	1.3981911769	4.3587944192	0.0075207765
13	С	2.4733882922	6.5184869846	0.1170627181
14	С	3.7562903807	5.9174113418	0.0118346462
15	С	3.8123469921	4.5079156312	-0.1007372545
16	С	2.6539163360	3.7574795760	-0.0991858108
17	Ν	-0.8281771295	4.0407637916	0.0647741881
18	Ν	0.2915746822	3.4962121823	-0.0054378843
19	Ν	4.8879224822	6.6724760831	0.0207858066
20	С	4.8019833288	8.1214670436	0.0695896089
21	Н	4.2697629386	8.5268843723	-0.7988047192
22	Н	5.8087386096	8.5342348993	0.0745293977
23	Н	4.2923643885	8.4627280040	0.9766774001
24	С	6.1861064522	6.0416288129	-0.1381878887
25	Н	6.9594831428	6.8042513268	-0.0730358266
26	Н	6.2773183506	5.5383003322	-1.1080953729
27	Н	6.3702057702	5.3044504744	0.6502075697
28	Н	0.3595271574	6.2327451118	0.1963409563
29	Н	2.3816236889	7.5935005130	0.2010945461
30	Н	4.7640888011	4.0012654324	-0.1884539177
31	Н	2.7047107564	2.6765215836	-0.1846643599
32	С	-5.3832162001	0.6270191562	0.0454235891
33	0	-6.5302297675	1.2853417383	-0.1133095592
34	С	-7.7228829279	0.4872409428	-0.1270522040
35	Н	-7.6899724612	-0.2263583166	-0.9514018038
36	Н	-8.5409225919	1.1898276696	-0.2644392015
37	Н	-7.8306804138	-0.0462143635	0.8182182506
38	0	-5.3193149398	-0.5745265122	0.1727292190
Absolute energy = 934.574900111347 Eh				

Supplementary Table 8 Optimised geometry of *E*-Azo using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

<u></u>	exertange ee			
No.	Atom	х	у	Z
1	С	3.8008497112	-1.2718930839	0.1603814213
2	С	3.8291071264	0.0965548691	-0.1159168511
3	С	2.6118409806	-1.9734776931	0.0409743868
4	С	1.4413869260	-1.3144225813	-0.3271331303
5	С	1.4694180190	0.0487688349	-0.6153233205
6	С	2.6599292833	0.7489305703	-0.5120442555
7	Н	4.7070253875	-1.7814767713	0.4639800771
8	Н	2.5669345877	-3.0399246528	0.2367524998
9	Н	0.5623061812	0.5467465497	-0.9380792349
10	Н	2.6979992524	1.8080824010	-0.7408532845
11	С	-2.1455497391	0.4239978117	0.0749451278
12	С	-2.0189676511	-0.9366125955	-0.3029943179
13	С	-3.3710060450	1.0315510252	0.2009831870
14	С	-4.5692229354	0.3198048515	-0.0797887038
15	С	-4.4529104772	-1.0436501858	-0.4661038826
16	С	-3.2216353917	-1.6430076695	-0.5572593201
17	Ν	0.2605484137	-2.1453852233	-0.4430918535
18	N	-0.8315962782	-1.5559694394	-0.4001820797
19	Ν	-5.7792142207	0.9168622327	0.0175365039
20	С	-5.8837092453	2.3069069973	0.4340294436
21	Н	-5.4939878433	2.4528026614	1.4471744133
22	Н	-6.9314523955	2.5993735125	0.4257958355
23	Н	-5.3384190116	2.9679917908	-0.2467289746
24	С	-6.9954633817	0.1654369065	-0.2524758778
25	Н	-7.8500581206	0.8299939393	-0.1470102144
26	Н	-7.1186164341	-0.6663760057	0.4493021526
27	Н	-6.9985663170	-0.2355491677	-1.2708852128
28	Н	-1.2471844169	0.9925169925	0.2893390438
29	Н	-3.4131197503	2.0676598247	0.5100196462
30	Н	-5.3389604268	-1.6261771739	-0.6816611353
31	Н	-3.1494381320	-2.6882085392	-0.8403084905
32	С	5.0805387176	0.8961386089	-0.0137402833
33	0	6.1294644874	0.1617211391	0.3566617806
34	С	7.3770492928	0.8567786897	0.4875612397
35	Н	7.6702152795	1.2932815478	-0.4682024965
36	Н	8.0980217605	0.1045190990	0.7975751533
37	Н	7.2948593229	1.6411657188	1.2410980749
38	0	5.1493870536	2.0834033097	-0.2387388671
Absolute energy = 934.502985475218 Eh				

Supplementary Table 9 Optimised geometry of the transition state between *E*-Azo and *Z*-Azo using DFT theory, the range-separated hybrid exchange-correlation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

No	Atom	v		7
NO.	Atom	X	y 0.9400700249	Z
1	C	2.8438996586	-0.8469799348	0.7501133643
2		2.8292069145	-0.1944344929	-0.4830362175
3	C	1.9055556430	-1.8291145735	1.02/0/65321
4	С	0.9268740533	-2.1354390953	0.0845130001
5	С	0.9182600381	-1.5029289454	-1.1593450233
6	С	1.8687126636	-0.5361907663	-1.4356404899
7	Н	3.5954603185	-0.5936247199	1.4875420435
8	Н	1.9159842271	-2.3564909391	1.9745297581
9	Н	0.1703281819	-1.7689447600	-1.8980995062
10	Н	1.8741059534	-0.0338413565	-2.3960650561
11	С	-1.5360563805	-0.6875408955	0.7553919476
12	С	-1.9038113074	-1.9224720550	0.2094630584
13	С	-2.3663123847	0.4094688830	0.6415527361
14	С	-3.5987675028	0.3304655118	-0.0506913155
15	С	-3.9756674662	-0.9328531605	-0.5620253264
16	С	-3.1521546855	-2.0295812740	-0.4069830743
17	N	0.0504475961	-3.2358915355	0.3499214868
18	N	-1.1876081548	-3.1455607194	0.3338782426
19	N	-4.4012799980	1.4248729649	-0.2008525063
20	С	-4.0608066938	2.6707127518	0.4624884657
21	Н	-4.0511476003	2.5689361147	1.5553188709
22	Н	-4.7989746629	3.4244226198	0.1948483808
23	Н	-3.0798558923	3.0329865029	0.1409125726
24	С	-5.7315206674	1.2738539177	-0.7634585900
25	Н	-6.1982222904	2.2546891862	-0.8329785220
26	Н	-6.3705421267	0.6297673373	-0.1457256436
27	Н	-5.6888397397	0.8500934651	-1.7712526774
28	Н	-0.6111829427	-0.5811562427	1.3082782834
29	Н	-2.0553292561	1.3385292448	1.1005644032
30	Н	-4.9257800103	-1.0609400827	-1.0635474056
31	Н	-3.4670582678	-2.9998598883	-0.7776883170
32	С	3.8231919759	0.8554074922	-0.8372889250
33	0	4.7124800592	1.0680751196	0.1316302516
34	С	5.7084875298	2.0669016922	-0.1294695807
35	Н	6.3052090755	1.7883546531	-0.9991064279
36	Н	6.3284215027	2.0981340015	0.7629535002
37	Н	5.2368897866	3.0354418883	-0.3006865138
38	0	3.8311528521	1.4541620902	-1.8889957794
	Absolut	te energy = 934,55653	31647269 Eh	

Supplementary Table 10 Optimised geometry of Z-Azo using DFT theory, the range-separated hybrid exchangecorrelation (xc)-functional ω B97X-D3 and the 6-311G(d,p) basis-set.

6. References

- 1. L.-Y. Hsu, P. Mainik, A. Münchinger, S. Lindenthal, T. Spratte, A. Welle, J. Zaumseil, C. Selhuber-Unkel, M. Wegener and E. Blasco, A Facile Approach for 4D Microprinting of Multi-Photoresponsive Actuators, *Adv. Mater. Technol.*, 2022, **8**, 2200801.
- 2. T. Schmitt, L.-Y. Hsu, N. Oberhof, D. Rana, A. Dreuw, E. Blasco and P. Tegeder, Ultrafast Excited States Dynamics of Orthogonal Photoswitches and The Influence of the Environment, *Adv. Funct. Mater.*, 2023, **n/a**, 2300863.