Supplementary Information (SI) for

Group-IIIA element doped BaSnS₂ as a high efficiency absorber for

intermediate band solar cell from a first-principles insight

Yang Xue,^a Changqing Lin,^a Jiancheng Zhong,^a Dan Huang^{a, b, c*} and Clas Persson^{d,e*}

^a Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

^b Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.

^c Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.

^d Department of Physics and Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316, Oslo, Norway.

^e Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.

Corresponding Authors:

*E-mail danhuang@gxu.edu.cn. (Dan Huang), clas.persson@fys.uio.no (Clas Persson)

The calculation detail for the decomposition energy:

In order to investigate their thermal stabilities, the decomposition energies of BaSnS₂ with group-IIIA element doping at Sn site at 25% doping concentration were calculated. The decomposition energies (ΔE_D) are calculated by the total energy of BaSn_{0.75}IIIA _{0.25}S₂(IIIA = Al, Ga and In) subtracting the sum of the total energies of the decomposition products.

Six different decomposition pathways are considered to calculate the decomposition energy:

Path-I:

$$BaSn_{0.75}Al_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{8}BaAl_2S_4 + \frac{1}{8}Ba_4 (\Delta E_{D=-0.70 \text{ eV}})$$

$$BaSn_{0.75}Ga_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{8}BaGa_2S_4 + \frac{1}{8}Ba_{(\Delta E_{D=-0.82 \text{ eV}})}$$

$$BaSn_{0.75}In_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{8}BaIn_2S_4 + \frac{1}{8}Ba_{(\Delta E_{D=-0.92 \text{ eV}})}$$

Path-II:

$$BaSn_{0.75}Al_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{8}Al_2S_3 + \frac{1}{8}BaS + \frac{1}{8}Ba \left(\Delta E_{D=-0.63 \text{ eV}}\right)$$

$$BaSn_{0.75}Ga_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{8}Ga_2S_3 + \frac{1}{8}BaS + \frac{1}{8}Ba \left(\frac{\Delta E_{D=-0.76 \text{ eV}}}{2} \right)$$

$$BaSn_{0.75}In_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{8}In_2S_3 + \frac{1}{8}BaS + \frac{1}{8}Ba \left(\frac{\Delta E_{D=-0.83 \text{ eV}}}{(\Delta E_{D=-0.83 \text{ eV}})} \right)$$

Path-Ш:

$$BaSn_{0.75}Al_{0.25}S_2 \rightarrow \frac{7}{8}BaS + \frac{1}{8}Al_2S_3 + \frac{3}{4}SnS + \frac{1}{8}Ba_{(\Delta E_{D=-0.76 \text{ eV}})}$$

$$8BaSn_{0.75}Ga_{0.25}S_2 \rightarrow \frac{7}{8}BaS + \frac{1}{8}Ga_2S_3 + \frac{3}{4}SnS_2 + \frac{1}{8}Ba_{(\Delta E_{D=-1.04 \text{ eV}})}$$

Path-IV:

$$BaSn_{0.75}Al_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{12}Al_2S_3 + \frac{1}{4}BaS + \frac{1}{6}Al_{(\Delta E_{D=-1.54 \text{ eV}})}$$

$$BaSn_{0.75}Ga_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{12}Ga_2S_3 + \frac{1}{4}BaS + \frac{1}{6}Ga_{(\Delta E_{D=-2.09 \text{ eV}})}$$

$$BaSn_{0.75}In_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{12}In_2S_3 + \frac{1}{4}BaS + \frac{1}{6}In_{(\Delta E_{D=-1.82 \text{ eV}})}$$

Path-V

$$BaSn_{0.75}Al_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{16}BaAl_4S_7 + \frac{1}{8}BaS + \frac{1}{8}Ba_{(\Delta E_{D=-0.66 \text{ eV})}$$

$$BaSn_{0.75}Ga_{0.25}S_2 \rightarrow \frac{3}{4}BaSnS_2 + \frac{1}{16}BaGa_4S_7 + \frac{1}{8}BaS + \frac{1}{8}Ba_4(\Delta E_{D=-0.79}eV)$$

Lack since no crystal structure information of $BaIn_4S_7$ is found.

Path-VI

Lack since no crystal structure information of $Ba_2Al_2S_5$ is found.

$$BaSn_{0.75}In_{0.25}S_2 \rightarrow \frac{5}{8}BaSnS_2 + \frac{1}{8}Ba_2In_2S_5 + \frac{1}{8}SnS + \frac{1}{8}Ba_2 (\Delta E_{D=-1.11 \text{ eV}})$$

$$BaSn_{0.75}Ga_{0.25}S_2 \rightarrow \frac{5}{8}BaSnS_2 + \frac{1}{8}Ba_2Ga_2S_5 + \frac{1}{8}SnS + \frac{1}{8}Ba_2 (\Delta E_{D=-1.01 \text{ eV}})$$

Fig. S1. Fluctuation of the free energy of $BaSnS_2$ with Al doping at Sn site at 25% doping concentration during the Ab initio molecular dynamic simulation at 300 K within 10 ps.

Fig. S2. Fluctuation of the free energy of $BaSnS_2$ with Ga doping at Sn site at 25% doping concentration during the Ab initio molecular dynamic simulation at 300 K within 10 ps.

Fig. S3. Fluctuation of the free energy of $BaSnS_2$ with In doping at Sn site at 25% doping concentration during the Ab initio molecular dynamic simulation at 300 K within 10 ps.

Fig. S4. The formation energies of substitution defects and their complexes in group-IIIA element doped $BaSnS_2$ by using $2 \times 1 \times 1$ supercells.

Fig. S5. The band structures of $BaSnS_2$ with Al doping at Sn site after the implementation of the strain in the range of -4%-4%.

Fig. S6. The band structures of $BaSnS_2$ with Ga doping at Sn site after the implementation of the strain in the range of -4%-4%.

Fig. S7. The band structures of $BaSnS_2$ with In doping at Sn site after the

implementation of the strain in the range of -4%-4%.

Fig. S8. The theoretical efficiencies of $BaSnS_2$ with group-IIIA element doping at Sn site at 25% doping concentration as a function of absorber thickness after considering the strain engineering in the range of -4%-4%.

Fig. S9. The band structures of $BaSnS_2$ with group-IIIA element doping at Ba site at 25% doping concentration.