ELECTRONIC SUPPLEMENTARY INFORMATION

One-dimensional van der Waals BiSBr: An Anisotropic Thermoelectric

Mineral

Prakash Govindaraj, Kowsalya Murugan, Kathirvel Venugopal*

Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, Tamil Nadu, India

*Corresponding author: <u>kathirvv@srmist.edu.in</u>

Fig. S1 Convergence test for k-mesh to calculate transport coefficients.

Fig. S2 Convergence test for κ -mesh to calculate lattice thermal conductivity.

	Lattice parameters (Å)		
	a	Ь	С
PBE	8.158 (+1.72 %)	11.597 (+19.55 %)	4.061 (+1.27 %)
PBE+D3	8.153 (+1.66 %)	9.727 (+0.28 %)	4.051 (+1.02 %)
Expt. (Ref. 52)	8.020	9.700	4.010

Table ST1 The lattice parameters calculated with different functionals are compared with experimental report.

(Bi 6s – S 3p)* + Bi 6p → Cup shaped ELF

Fig. S3 3D ELF and the formation of cup-shaped ELF

Figure S4 The effect of spin-orbit coupling and van der Waals corrections on the electronic band structure of BiSBr.

Table ST2 band gaps calculated with various functionals are listed against the experimental report

	E_g (eV)	
PBE	1.83 (-8.95 %)	
PBE+SOC	1.20 (-40.30 %)	
PBE+D3	1.97 (-1.99 %)	
PBE+D3+SOC	1.49 (-25.87 %)	
Expt. (Ref. 52)	2.01	

Fig. S5 Phonon lifetime as a function of frequency at 300 K