NiRu-Mo₂Ti₂C₃O₂ as an efficient catalyst for alkaline hydrogen evolution reactions: the role of bimetallic site interactions in promoting Volmer-step kinetics

Qing Xi ^{a,b}, Fangxia Xie ^{a,b}, Zijun Sun ^d, Jianxin Liu ^b, Xiaochao Zhang ^b, Yawen Wang ^b,

Aijuan Zhou ^a, Xiaoli Ma ^{a,*}, Xiaoming Gao ^c, Xiuping Yue ^a, Jun Ren^b, Caimei Fan ^{a,b}, Xuan Jian

°, Rui Li ^{a,b}*

^a Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of

Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR

China

^b Key Laboratory of Coal Science and Technology, Ministry of Education, College of

Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR

China

^c College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical

Reaction Engineering, Yan'an University, Yan'an 716000, PR China

^d Xi'an North Huian Chemical Industries Co. Ltd, Xi'an 710302, PR China

*Corresponding author.

Tel.: +86 138 0341 9703, +86 132 3369 9182; fax: +86 0351 6018554.

E-mail address: 1026158815@qq.com (Ma X), lirui13233699182@163.com (Li R)

Fig. S1 Model structure diagram of Ru_s -Mo₂Ti₂C₃O₂

Fig. S2 Top view of Type-1 diatomic catalyst.

Fig. S3 Top view of Type-2 diatomic catalyst.

Fig. S4 Top view of Type-3 diatomic catalyst.

Fig. S5 The binding energy of TM_n atoms on Ru_s -Mo₂Ti₂C₃O₂.

Fig. S6 PDOS diagram of $TMRu-Mo_2Ti_2C_3O_2$.

Fig. S7 TMRu- $Mo_2Ti_2C_3O_2$ surface reaction site diagram.