## Supporting Information for Martinoid: The Peptoid Martini Force Field

Hamish W. A. Swanson, Alexander Van Teijlingen, King Hang Aaron Lau, and Tell Tuttle

Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.

Corresponding author address: <a href="mailto:ac-uk">aaron.lau@strath.ac.uk</a>, <a href="mailto:tell.tuttle@strath.ac.uk">tell.tuttle@strath.ac.uk</a>

#### 1. Peptoid Monomer Synthesis

Peptoids were prepared by either Zuckermann's solid phase submonomer protocol<sup>1</sup> or by liquid phase synthesis based on a one step  $S_N2$  reaction initially described by Salaun et al.<sup>2</sup> All solvents and reagents received from the manufacturers specified below were used without further purification.

#### 1.1. Solid Phase Synthesis (SPS)

0.74 g of Rink Amide polystyrene resin (scale 0.66 mM, Merck-Novabiochem, MBHA Rink Amide 0.89 mM/g loading) was swollen by successive washes with 1 x DCM (Fischer Scientific, HPLC Gradient Grade) and 2 x DMF (Honeywell, peptide synthesis grade). The resin was then deprotected with two washes of 5 mL 20 % piperidine (Fisher Scientific, Reagent Grade) in NMP (Honeywell, peptide synthesis grade) each with a duration of 20 minutes. After washing the resin with DMF six times, the resin was treated with bromoacetic acid (8.8 mL, 1.5 M, Merck-Sigma Aldrich) and DIC in DMF (4.13 mL, 50:50 /v, Fluorochem, Glossop, UK) for 40 minutes with shaking. The resin was subsequently filtered and washed four times with DMF and two times with NMP. The resin was then treated with the amine required for each type of sidechain (Table S1) dissolved in NMP (8.8 mL, 1.5 M) with shaking for 40 minutes. The resin was then alternately washed with methanol and DCM three times and dried. The resin was twice treated with cleavage solution (95 % TFA: 2.5 % H2O: 2.5 % TIPS) with shaking for 20 minutes each time. The two batches of TFA with the cleaved peptoid was separately collected, and the TFA was removed by rotary evaporation leaving a yellow oil, this was solubilised in a mixture of H2O and acetonitrile, transferred to a pre-weighed vial, and freeze-dried.

Table S1 – Synthesis and work up details for SPS.

| Species | Name*                      | Amine in   | Crude Mass (g) | Pure Material (g) | Yield (%) |
|---------|----------------------------|------------|----------------|-------------------|-----------|
|         |                            | Stock (mL) |                |                   |           |
| Nf      | N-Benzyl amine             | 1.44       | 0.1161         | 0.0687            | 41.8      |
| Nfe     | 2-(phenylethyl)amine       | 1.66       | 0.1215         | 0.0626            | 35.1      |
| Nfes    | (S)-(-)-1-Phenylethylamine | 1.66       | 0.1902         | 0.0795            | 44.6      |

<sup>\*</sup>Note: all amines used in SPS were purchased from Apollo Scientific.

Preparative reverse phase HPLC (RP-HPLC) was used to purify the peptoids. Stock solutions of the crude material were prepared in mixtures of  $H_2O$  (Fischer Scientific, HPLC Gradient Grade) and acetonitrile (Fischer Scientific, HPLC Gradient Grade) which were filtered through 0.2-micron syringe filters to remove any solids. Preparative RP-HPLC was performed on a Jupiter C18 column (Phenomenex, 90 Å, 250 x 10.0 mm) to purify the material using an isocratic eluent mixture of 2 % acetonitrile: 98 %  $H_2O$  with 0.1 % TFA. Higher acetonitrile percentages were found to preclude material partitioning onto the solid phase, with the material eluting as the injection peak. 1 mL of crude stock at concentrations from 2 – 25 mg/mL were injected across different preparative runs and fractions were collected every 30 or 60 seconds. The HPLC fractions with matching UV absorbance peak features (data at 220 nm and 254 nm) were combined, and solvent was removed successively by a centrifugal evaporation (heating at 30°C; to reduce volume to a few millilitres) and by freeze-drying. A fluffy white crystalline solid was obtained for Nfe and Nfes, while for the product for Nfe was more granular in nature. The identity and final purity of the product was characterized by NMR (see section 2).

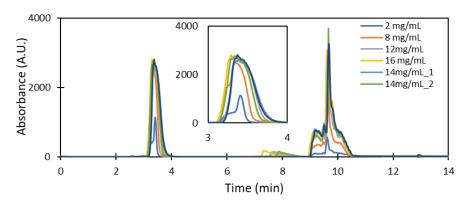
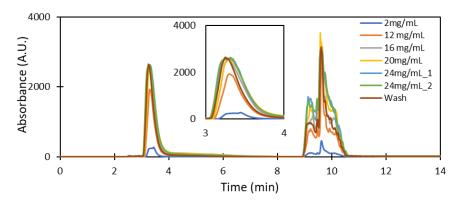
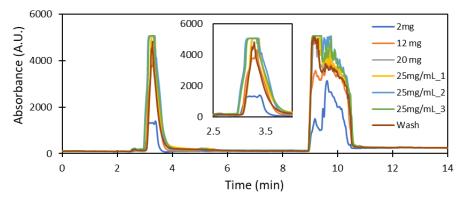





Figure S1 – All fractions of Nf obtained by isocratic HPLC with 2 % acetonitrile:  $98 \% H_2O$  with 0.1 % TFA. Fractions collected between 3-4 minutes were combined giving pure material as evidenced by NMR spectroscopy (see section 2).



**Figure S2** – All fractions of Nfe obtained by isocratic HPLC with 2 % acetonitrile: 98 %  $H_2O$  with 0.1 % TFA. Fractions collected between 3 – 4 minutes were combined giving pure material as evidenced by NMR spectroscopy (see section 2).



**Figure S3** – All fractions of Nfes obtained by isocratic HPLC with 2 % acetonitrile: 98 %  $H_2O$  with 0.1 % TFA. Fractions between 3 – 4 minutes were combined giving pure material as evidenced by NMR spectroscopy (see section 2).

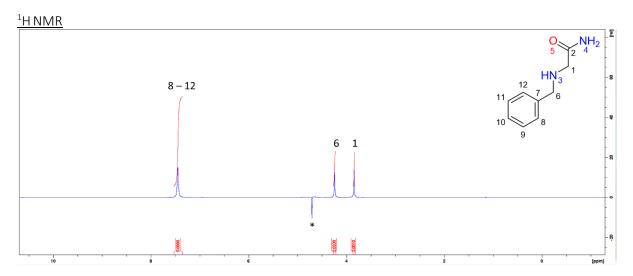
#### 1.2. Liquid Phase Synthesis

It was found that the cleavage of single monomers without bulky aromatic groups from the Rink Amide resin using TFA resulted in chemical decomposition. For Nk and Nke this was particularly acute, with it not being possible to obtain pure material. It was suspected that this occurred through a slow C-terminal cyclization reaction observed in some peptoids, as described by Seo et al.<sup>3</sup> While the peptoids incorporating Nk and Nke residues are generally stable even under acidic conditions (e.g., neat TFA), it is thought that the small size of the monomeric form and the prolonged TFA exposure associated with resin cleaving and HPLC purification may have promoted cyclization.

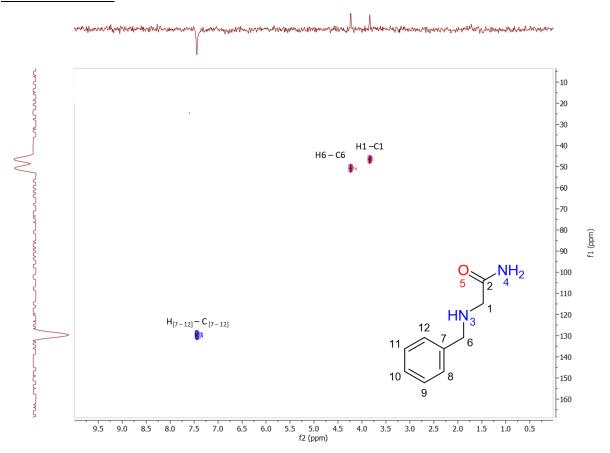
To access monomers of this description it was decided instead to begin liquid phase synthesis with the 2-bromoacetamide as the starting material and perform  $S_N2$  reactions with the primary amine sidechain. 2-bromoacetamide (Sigma Aldrich) was dissolved in acetonitrile (HPLC Gradient Grade, Fisher Scientific) at a concentration of 0.25 M with stirring (typically 1-2 mmol scale). 1 amine equivalent was then added, leading to an intensification in the yellow solution colour. All reagents, suppliers and final yields are shown in Tables S2.

Acetonitrile was selected as the preferred polar aprotic solvent as several of the monomer products precipitated in this solvent which was convenient for work-up. In initial synthesis batches, 1 equivalent of diisopropylethylamine (DIPEA, Alfa Aesar) was used as a complementary base to neutralise the equivalent of hydrogen bromide formed by the reaction. Through X-ray crystallography characterization, it was confirmed that the final product was a bromide salt (results not shown).

It was found in subsequent batches that similar yields could be obtained with the omission of DIPEA, as well as resulting in faster precipitate formation and reduced adhesion to glassware. For all batches, after  $12 - 24 \, h$  the precipitate was recrystallised in hot acetonitrile:methanol (approximately 2:1 /v). For Nke it was necessary to use acetone as the recrystallisation solvent. Although this monomer is unstable in acetone over extended periods (suspected imine formation), it is found to be sufficiently stable for our protocol with a short recrystallisation step (e.g., rapid transfer of hot liquor into ice-bath). All solids were filtered and washed with the relevant recrystallization solution.


Table S2 – Species, monomer, supplier and recovered yield for liquid phase reactions.

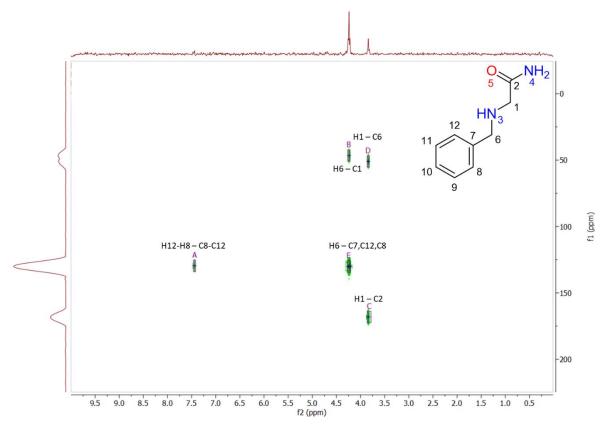
| Species             | Amine                                | Supplier                | Yield (%) |
|---------------------|--------------------------------------|-------------------------|-----------|
| Nab.HBr             | 1-butylamin <i>e</i>                 | Alfa Aesar              | 22.0      |
| Nfe[4Cl].HBr        | 2-(4-Chlorophenyl) ethylamine        | Tokyo Chemical Industry | 26.3      |
| <i>boc</i> -Nk.HBr  | t-butyl N-(4-aminobutyl) carbamate   | Apollo Scientific       | 57.4      |
| <i>boc</i> -Nab.HBr | Ethane-1,2-diamine (N-Boc Protected) | Apollo Scientific       | 28.4      |


#### 2. Peptoid Monomer Characterisation

It was found that obtaining  $^{13}$ C NMR data was challenging, with many scans yielding poor quality data. It was proposed that this was due to the nitrogen atoms within the structures, which can supress  $^{13}$ C signals. For this reason, we decided to use both  $^{1}$ H -  $^{13}$ C Heteronuclear Single Quantum Coherence (HSQC) and Heteronuclear Multiple Bond Correlation (HMBC) to infer the chemical shifts of  $^{13}$ C atoms. The most important inference made possible by HMBC is the cross-peak between the  $C_{\alpha}$  of the peptoid monomer and the amide C-terminus, which cannot be identified due to proton exchange of protonated nitrogen atoms which occurs due to  $D_{2}$ O exchange. In all cases the inferences obtained are consistent with the expected structures (Figures S4 – S24).

#### 2.1. Nf




**Figure S4** – Nf <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm): 7.47 – 7.43 (m, 5H), 4.24 (s, 2H), 3.84 (s, 2H). \* is H<sub>2</sub>O



**Figure S5** – Nf HSQC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).

Table S3 – Nf HSQC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon |
|--------------------------|--------------------------|-----------------|
| 130.52                   | 7.47 – 7.43              | 8 – 12          |
| 46.53                    | 3.84                     | 1               |
| 50.73                    | 4.24                     | 6               |



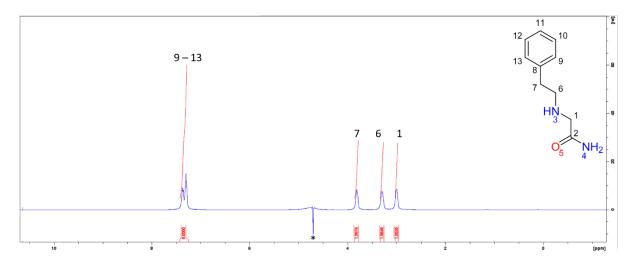

**Figure S6** – Nf HMBC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).

Table S4 – Nf HMBC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift (ppm) | Assigned Carbon     |
|--------------------------|-----------------------|---------------------|
| 50.73                    | 3.84                  | H1 – C6             |
| 168.12                   |                       | H1 – C2             |
| 46.53                    | 4.24                  | H6 – C1             |
| 129.68                   |                       | H6 – C7,C8,C12      |
| 129.68                   | 7.47 – 7.43           | H8,H9,H10,H11,H12 – |
|                          |                       | C8,C9,C10,C11,C12A  |

#### 2.2. Nfe

#### <sup>1</sup>H NMR



**Figure S7** – Nfe  $^{1}$ H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm): 7.39 – 7.28 (m, 5H), 3.81 (t, 2H), 3.28 (s, 2H), 2.99 (t, 2H). \* is H<sub>2</sub>O

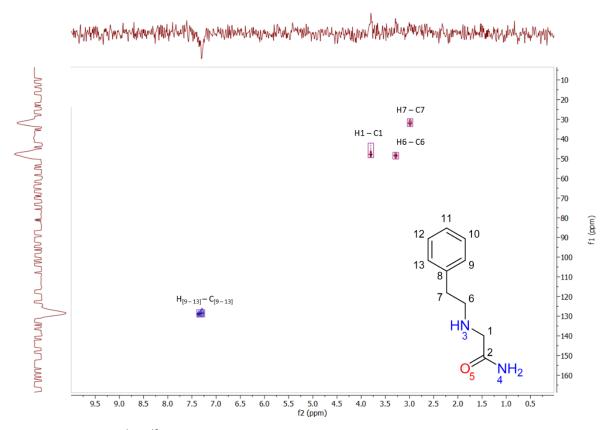
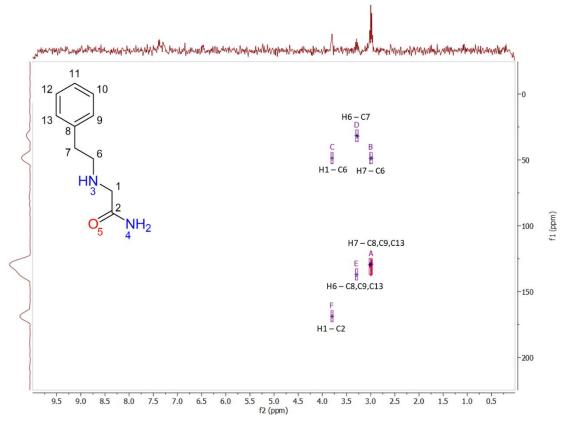



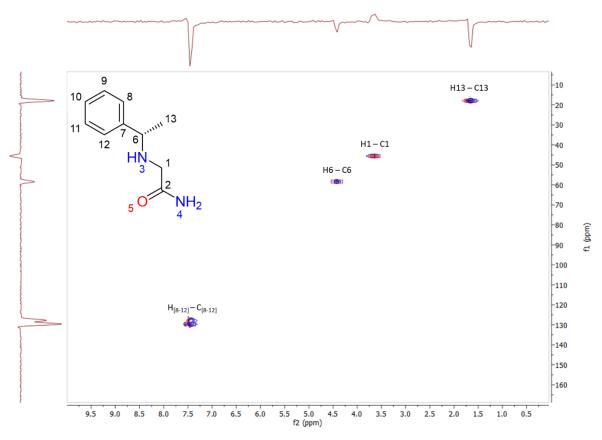

Figure S8 – Nfe HSQC ( $^{1}\text{H}$  –  $^{13}\text{C}$ , 400 MHz, D<sub>2</sub>O).

Table S5 – Nfe HSQC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon |
|--------------------------|--------------------------|-----------------|
| 31.97                    | 2.99                     | H7 – C7         |
| 48.47                    | 3.28                     | H6 – C6         |
| 47.82                    | 3.81                     | H1 – C1         |
| 128.64                   | 7.39 – 7.28              | 9 – 13          |



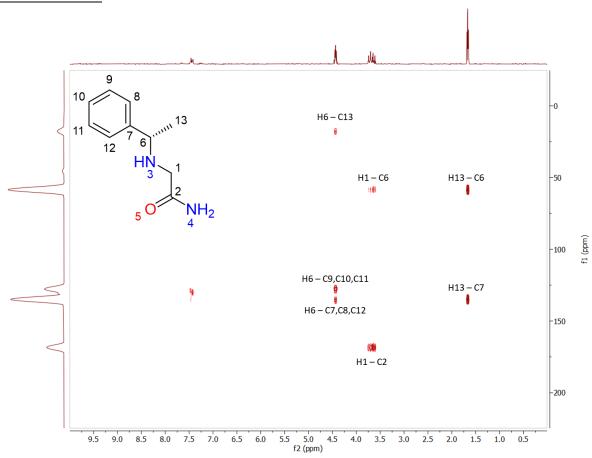
**Figure S9** – Nfe HMBC ( ${}^{1}\text{H} - {}^{13}\text{C}$ , 400 MHz, D<sub>2</sub>O).


Table S6 – Nfe HMBC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift (ppm) | Peak Inter-relation |
|--------------------------|-----------------------|---------------------|
| 48.47                    | 2.99                  | H7 – C6             |
| 128.64                   |                       | H7 – C8, C9, C13    |
| 31.97                    | 3.28                  | H6 – C7             |
| 129.00                   |                       | H6 – C8,C9,C13      |
| 48.47                    | 3.81                  | H1 – C6             |
| 168.61                   |                       | H1 – C2             |

#### 2.3. Nfes <sup>1</sup>H NMR

# 

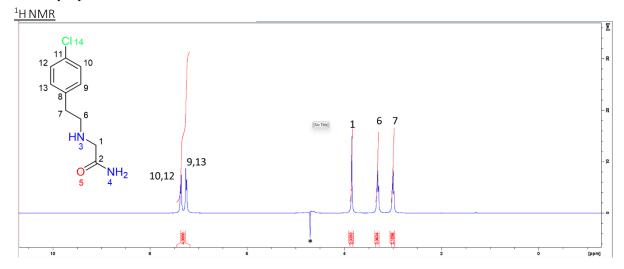

**Figure S10** – Nfes  $^1$ H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm): 7.49 – 7.42 (m, 5H), 4.44 (s,1H), 3.63 (m\*, 2H) 1.67 (s, 3H). (Note: doublet from  $^2J_{HH}$  coupling on  $C_{\alpha}$  which exhibit a strong roof effect giving the appearance of a quartet). \* is H<sub>2</sub>O. d



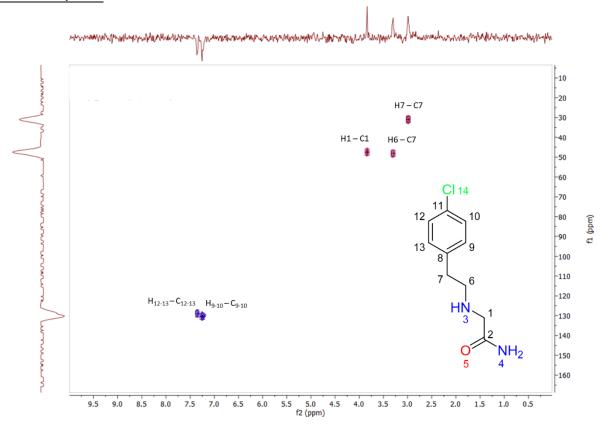
**Figure S11** – Nfes HSQC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).

Table S7 – Nfes HSQC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon           |
|--------------------------|--------------------------|---------------------------|
| 18.13                    | 1.67                     | H13 – C13                 |
| 17.85                    | 3.63                     | H1 – C1                   |
| 45.72                    | 4.44                     | H6 – C6                   |
| 129.24                   | 7.49 – 7.42              | $H_{[8-12]} - C_{[8-12]}$ |



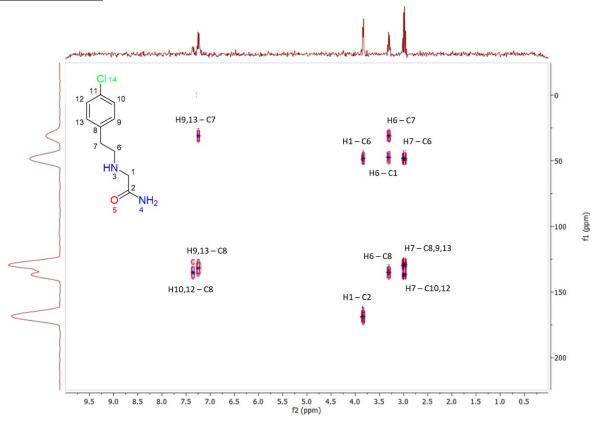

**Figure S12** – Nfes HMBC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).


Table S8 – Nfes HMBC cross peaks.

| F1 Carbon   | F2 Proton Shift | F2 Proton Shift |
|-------------|-----------------|-----------------|
| Shift (ppm) | (ppm)           | (ppm)           |
| 58.43       | 1.67            | 1.67            |
| 134.87      |                 | H13 – C6        |
| 58.43       | 3.63            | 3.63            |
| 168.85      |                 | H1 – C2         |
| 17.65       | 4.44            | 4.44            |
| 127.29      |                 | H6 – C9,C10,C11 |
| 135.25      |                 | H6 – C7,C8,C12  |

#### 2.4. Nfe[4Cl]



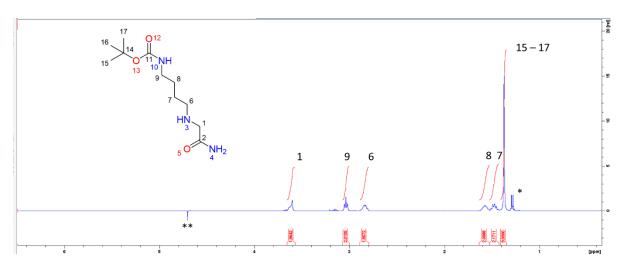

**Figure S13** – Nfe[4Cl]  $^{1}$ H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm): 7.37 – 7.24 (dd, 4H), 3.84 (s,2H), 3.31 (t,2H), 2.99 (t,2H), \* is H<sub>2</sub>O.



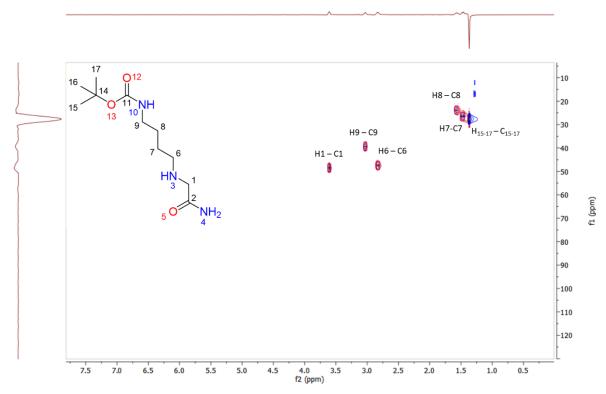
**Figure S14** – Nfe[4Cl] HSQC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).

Table S9 – Nfe[4Cl] HSQC cross peaks.

| F1 Carbon Shift | F2 Proton Shift | Assigned Carbon                       |
|-----------------|-----------------|---------------------------------------|
| (ppm)           | (ppm)           |                                       |
| 31.00           | 2.99            | H7 – C7                               |
| 48.15           | 3.31            | H6 – C6                               |
| 47.50           | 3.84            | H1 – H1                               |
| 130.32          | 7.26 – 7.24     | H <sub>9-10</sub> – C <sub>9-10</sub> |
| 129.03          | 7.37 – 7.35     | $H_{12-13} - C_{12-13}$               |



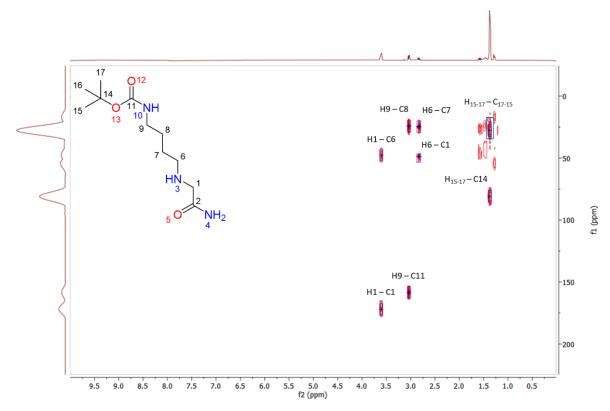

**Figure S15** – Nfe[4Cl] HMBC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).


Table S10 – Nfe[4Cl] HMBC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon    |
|--------------------------|--------------------------|--------------------|
| 48.48                    | 2.99                     | H7 – C6            |
| 131.82                   |                          | H7 – C8,9,10,12,13 |
| 31.06                    | 3.31                     | H6 – C7            |
| 47.54                    |                          | H6 – C1            |
| 134.95                   |                          | H6 – C8            |
| 48.34                    | 3.84                     | H1 – C6            |
| 168.61                   |                          | H1 – C2            |
| 31.06                    | 7.25                     | H8,13 – C7         |
| 132.05                   |                          | H8,13 – C8         |
| 134.22                   |                          | H10,12 – C8        |

#### 




**Figure S16** – *boc*-Nk  $^1$ H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm): 3.62 (s,2H), 3.04 (t,2H), 2.83 (t,2H), 1.58 (p, 2H), 1.48 (p,2H), 1.37 (s, 9H). \* is thought to be due to the presence of IPA from spatula cleaning, \*\* is H<sub>2</sub>O.



**Figure S17** – *boc*-Nk HSQC ( ${}^{1}\text{H}$  –  ${}^{13}\text{C}$ , 400 MHz, D<sub>2</sub>O).

Table S11 – boc-Nk HSQC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift (ppm) | Assigned Carbon         |
|--------------------------|-----------------------|-------------------------|
| 27.54                    | 1.36                  | $H_{15-17} - C_{15-17}$ |
| 26.47                    | 1.47                  | H7 – C7                 |
| 23.88                    | 1.57                  | H8 – C8                 |
| 47.11                    | 2.84                  | H6 – C6                 |
| 39.41                    | 3.03                  | H9 – C9                 |
| 48.47                    | 3.60                  | H1 – C1                 |



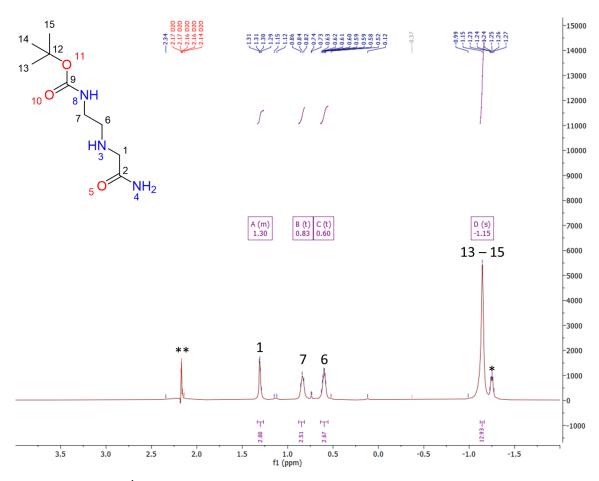

**Figure S18** – *boc*-Nk HMBC ( $^{1}$ H –  $^{13}$ C, 400 MHz, D<sub>2</sub>O).

Table S12 – *boc*-Nk HMBC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon          |
|--------------------------|--------------------------|--------------------------|
| 27.65                    | 1.38                     | $H_{15-17} - C_{17-15}$  |
| 81.41                    |                          | H <sub>15-17</sub> – C14 |
| 24.72                    | 2.83                     | H6 – C7                  |
| 48.62                    |                          | H6 – C1                  |
| 24.4                     | 3.04                     | H9 – C8                  |
| 159.41                   |                          | H9 – C11                 |
| 47.65                    | 3.60                     | H1 – C6                  |
| 171.96                   | 3.61                     | H1 – C2                  |

#### 2.6. *boc*-Nke

#### $^{1}HNMR$



**Figure S19** - boc-Nke  $^1$ H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm): 1.30 (s,2.00H), 0.83 (t, 2.51H), 0.6 (t,2.67H), -1.15(s, 12,93H). \* Is thought to be IPA and \*\* is H<sub>2</sub>O.

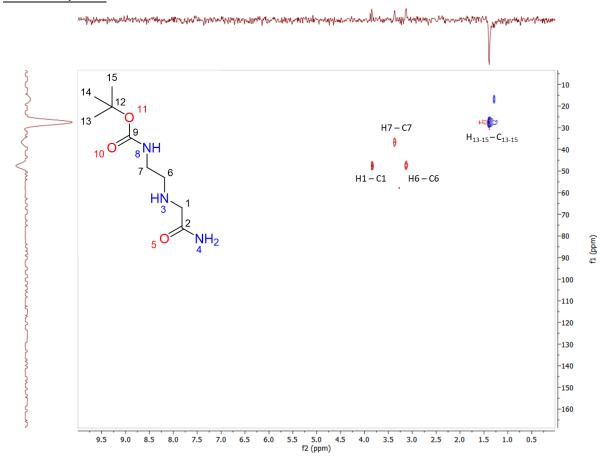
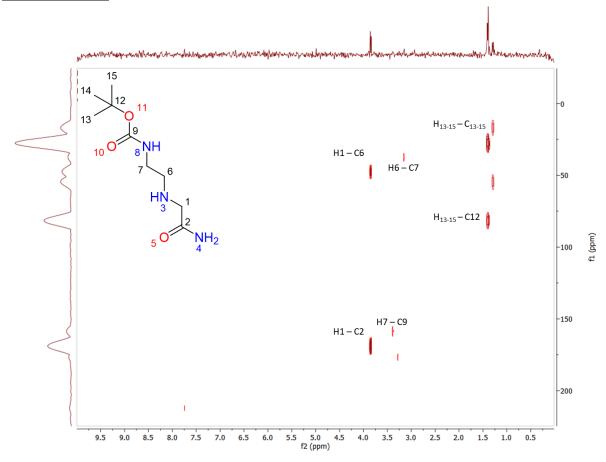




Figure S20 – *boc*-Nke HSQC ( ${}^{1}\text{H} - {}^{13}\text{C}$ , 400 MHz, D<sub>2</sub>O).

Table S13 – *boc*-Nk HSQC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon                         |
|--------------------------|--------------------------|-----------------------------------------|
| 27.49                    | 1.39                     | H <sub>13-15</sub> – C <sub>13-15</sub> |
| 47.77                    | 3.13                     | H6 – C6                                 |
| 36.55                    | 3.38                     | H7 – C7                                 |
| 47.77                    | 3.84                     | H1 – C1                                 |



**Figure S21** – *boc*-Nk HMBC ( ${}^{1}H$  –  ${}^{13}C$ , 400 MHz, D<sub>2</sub>O).

Table S14 – *boc*-Nk HMBC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon          |
|--------------------------|--------------------------|--------------------------|
| 28.23                    | 1.39                     | $H_{13-15} - C_{15-13}$  |
| 81.91                    |                          | H <sub>13-15</sub> – C12 |
| 37.46                    | 3.14                     | H6 – C7                  |
| 159.00                   | 3.38                     | H7 – C9                  |
| 48.47                    | 3.85                     | H1 – C6                  |
| 169.93                   |                          | H1 – C2                  |

#### 2.7. Nab

**Figure S22** – Nab  $^1$ H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm): 3.85 (s,2H),3.04 (t,2 H), 1.63 (p,2H), 1.32 (m,2H), 0.85 (t, 3H).

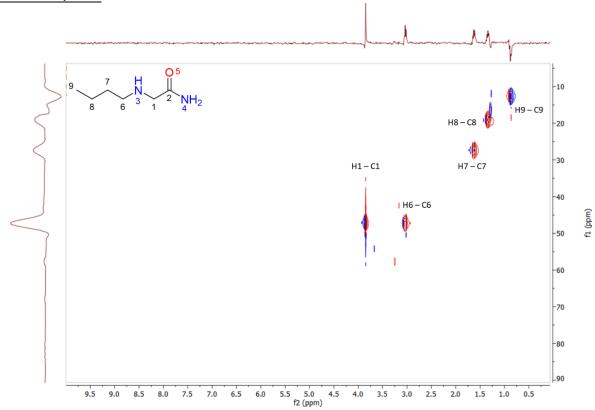



Figure S23 –Nab HSQC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).

Table S15 – Nab HSQC cross peaks.

| F2 Proton Shift<br>(ppm) | F1 Carbon Shift<br>(ppm) | Assigned Carbon |
|--------------------------|--------------------------|-----------------|
| 0.85                     | 12.70                    | H9 – C9         |
| 1.32                     | 19.12                    | H8 – C8         |
| 1.63                     | 27.50                    | H7 – C7         |
| 3.04                     | 47.31                    | H6 – C6         |
| 3.85                     | 47.47                    | H1 – C1         |

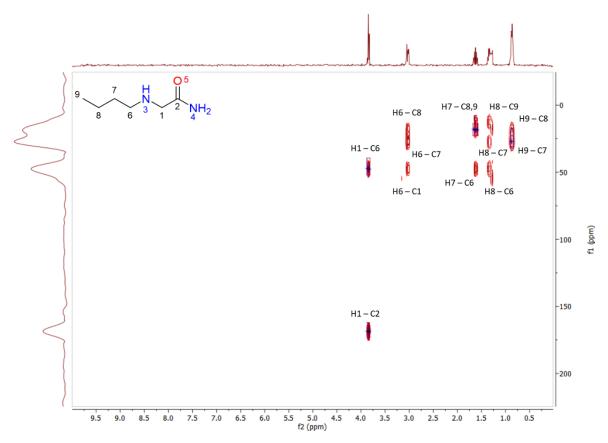



Figure S24 –Nab HMBC ( ${}^{1}H - {}^{13}C$ , 400 MHz, D<sub>2</sub>O).

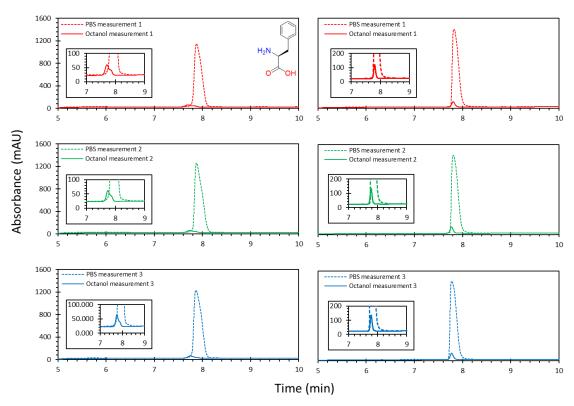
Table S16 – Nab HMBC cross peaks.

| F1 Carbon Shift<br>(ppm) | F2 Proton Shift<br>(ppm) | Assigned Carbon |
|--------------------------|--------------------------|-----------------|
| 17.88                    | 0.85                     | H9 – C8         |
| 27.22                    |                          | H9 – C7         |
| 12.36                    | 1.32                     | H8 – C9         |
| 27.79                    |                          | H8 – C7         |
| 47.88                    |                          | H8 – C6         |
| 18.87                    | 1.63                     | H7 – C8         |
| 47.88                    |                          | H7 – C6         |
| 17.88                    | 3.04                     | H6 – C8         |
| 27.22                    |                          | H6 – C7         |
| 47.88                    |                          | H6 – C1         |
| 47.45                    | 3.85                     | H1 – C6         |
| 169.45                   |                          | H1 – C2         |

#### 3. Experimental LogD Measurements

#### 3.1 LogD Measurement Method

The method described by Cobb *et al.*<sup>4</sup> was broadly followed in this work. 500  $\mu$ L of octanol (Sigma Aldrich) measured by weight was placed in an HPLC vial and to this 500  $\mu$ L of PBS solution was added (Gibco 10X, diluted as required) containing the dissolved peptoid material over a concentration range of 0.3 – 5 mg/mL as required for a given species. More material was required for aliphatic monomers (*e.g.*, Nle, Nab or *boc*-Nk) as opposed to their aromatic counterparts (*e.g.*, Nf, Nfe, Nfes or Nfe[4Cl]). This vial was then sealed and agitated at 150 rpm for ~ 24h in an incubator to maintain a constant temperature of 25°C. Then a portion of both phases (~ 100  $\mu$ L) were analysed using reversed-phase high performance liquid chromatography (HPLC) using a Luna 5  $\mu$ m C18 column (Phenomenex, 100 Å, 100 x 4.6 mm) with a gradient of 2 to 45 % acetonitrile water over either 15 or 30 minutes with 0.1% trifluoroacetic acid as an additive. The resultant peak areas were integrated (peak area per minute) and compared between the two phases.


#### **LogD Method Validation**

#### 3.2. Phe-OH

L-Phenylalanine from Sigma Aldrich (reagent grade).

Table S17 – Retention time, peak area/minute and peak height for 0.3 and 3 mg/mL Phe-OH.

|            |          | PBS Phase |         | (        | Octanol Phas | е              |        |
|------------|----------|-----------|---------|----------|--------------|----------------|--------|
|            |          | Area      | Height  |          | Area         | Height         | LogD   |
| Experiment | RT (min) | mAU*min   | (mAU)   | RT (min) | mAU*min      | (mAU)          |        |
|            | 7.822    | 70.2561   | 528.685 | 7.807    | 2.3946       | 29.631         | -1.445 |
| . (0.44    | 7.806    | 71.9372   | 533.671 | 7.772    | 2.8087       | 34.513         | -1.502 |
| 1 (214 nm) | 7.778    | 72.9688   | 540.613 | 7.775    | 2.9031       | 34.91          | -1.482 |
|            | 7.516    | 63.2309   | 223.089 | 7.782    | 2.3537       | 23.939         | -1.467 |
| 2 (254 nm) | 7.489    | 65.8692   | 227.06  | 7.821    | 2.1321       | 22.138         | -1.408 |
|            | 7.49     | 66.0093   | 228.642 | 7.791    | 2.3782       | 24.481         | -1.400 |
|            |          |           |         |          |              | $\overline{x}$ | -1.451 |
|            |          |           |         |          |              | σ              | 0.037  |



**Figure S25** – LogD traces for Phe by two triplicate measurements; the cut-away included shows the absorbance of the *n*-octanol phase the absorbance for which is very small compared to the PBS phase.

#### $3.3.\ Phe\text{-}NH_2$

L-Phenylalanine Amidated from Bachem.

Table S18 – Retention time, peak area/minute and peak height for  $0.3\ mg/mL\ Phe-NH_2$  at 214 nm.

|            |       | PBS Phase | !       |       | Octanol Phase | e              |        |
|------------|-------|-----------|---------|-------|---------------|----------------|--------|
|            | RT    | Area      | Height  | RT    | Area          | Height         | LogD   |
| Experiment | (min) | mAU*min   | (mAU)   | (min) | mAU*min       | (mAU)          |        |
|            | 6.868 | 122.3923  | 668.116 | 6.791 | 102.1841      | 937.537        | -0.078 |
|            | 6.848 | 124.8132  | 666.971 | 6.737 | 117.5884      | 1015.647       | -0.026 |
| 1          | 6.848 | 124.096   | 666.394 | 6.723 | 119.882       | 1026.751       | -0.015 |
|            |       |           |         |       |               | $\overline{x}$ | -0.040 |
|            |       |           |         |       |               | σ              | 0.028  |

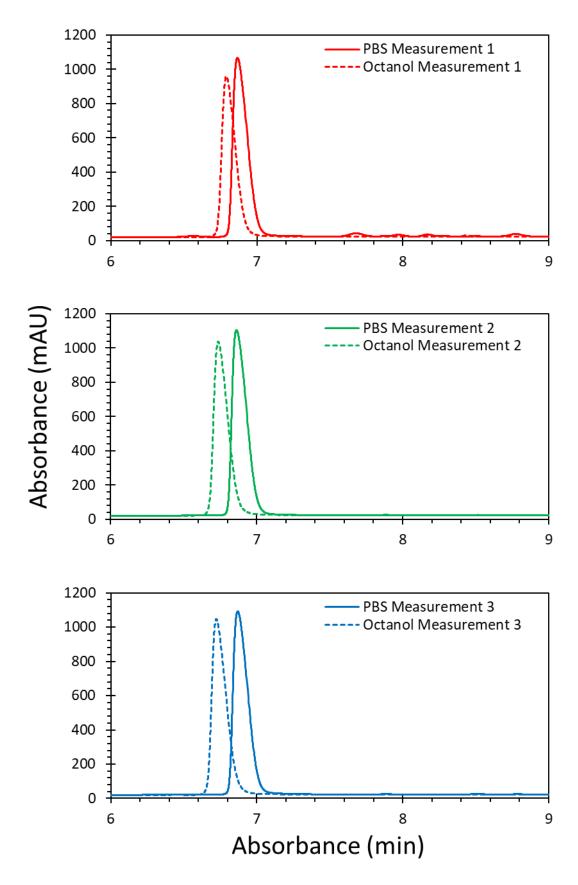



Figure S26 – LogD traces for Phe- $NH_2$  by triplicate measurements, like Phe in the apparently larger portion of material in the aqueous phase verses the n-octanol phase.

 ${\bf 3.4.\ Nf-NH_2}$  Table S19 – Retention time, peak area/minute and peak height for 0.3 mg/mL Nf-NH $_2$  at 214 nm.

|            |       | PBS Phas | e      |       | Octanol Pha | ise            |        |
|------------|-------|----------|--------|-------|-------------|----------------|--------|
|            | RT    | Area     | Height | RT    | Area        | Height         | LogD   |
| Experiment | (min) | mAU*min  | (mAU)  | (min) | mAU*min     | (mAU)          |        |
|            | 7.04  | 58.97    | 443.57 | 6.89  | 62.69       | 435.79         | 0.027  |
|            | 7.01  | 68.65    | 501.01 | 6.89  | 71.18       | 482.73         | 0.016  |
| 1          | 7.02  | 63.86    | 472.49 | 6.87  | 67.38       | 466.77         | 0.023  |
|            | 6.56  | 78.21    | 743.88 | 6.39  | 77.09       | 696.07         | -0.006 |
|            | 6.57  | 77.75    | 742.64 | 6.37  | 75.17       | 694.36         | -0.015 |
| 2          | 6.57  | 72.37    | 700.99 | 6.38  | 71.50       | 676.20         | -0.005 |
|            |       |          |        |       |             | $\overline{x}$ | 0.007  |
|            |       |          |        |       |             | σ              | 0.016  |

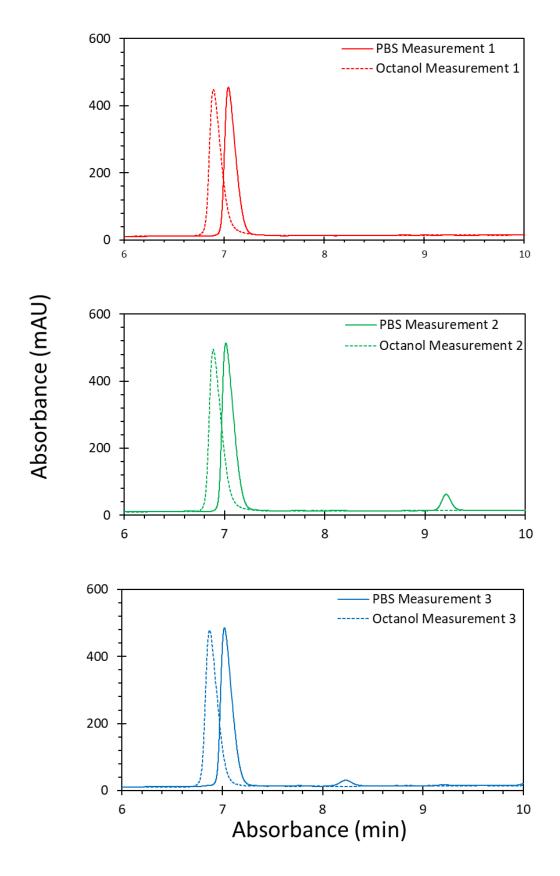



Figure S27 – LogD traces for Nf-NH<sub>2</sub> by triplicate measurements; there the PBS and n-octanol phases are roughly the same which is consistent with the calculated logD for this species of  $\sim 0.0$ .

### $3.5.\ Nfe-NH_2$ Table S20 – Retention time, peak area/minute and peak height for $0.3\ mg/mL\ Nfe-NH_2$ at 214 nm.

|            |          | PBS Phase |         | (        | Octanol Phas | ie .           |       |
|------------|----------|-----------|---------|----------|--------------|----------------|-------|
|            |          | Area      | Height  |          | Area         | Height         | LogD  |
| Experiment | RT (min) | mAU*min   | (mAU)   | RT (min) | mAU*min      | (mAU)          |       |
|            | 8.564    | 51.170    | 449.020 | 8.363    | 71.749       | 672.906        | 0.147 |
|            | 8.564    | 51.691    | 442.385 | 8.376    | 72.458       | 683.324        | 0.147 |
| 1          | 8.545    | 52.236    | 458.700 | 8.379    | 73.007       | 682.070        | 0.145 |
|            | 8.428    | 54.774    | 563.263 | 8.279    | 75.094       | 705.311        | 0.137 |
|            | 8.422    | 59.360    | 600.988 | 8.278    | 73.307       | 698.970        | 0.092 |
| 2          | 8.416    | 60.101    | 613.289 | 8.273    | 74.785       | 701.231        | 0.095 |
|            |          |           |         |          |              | $\overline{x}$ | 0.127 |
|            |          |           |         |          |              | σ              | 0.024 |

#### 3.6. Nfes-NH<sub>2</sub>

Table S21 – Retention time, peak area/minute and peak height for 0.3 mg/mL Nfes-NH $_2$  at 214 nm.

|            |          | PBS Phase |         | (        | Octanol Phas | se             |       |
|------------|----------|-----------|---------|----------|--------------|----------------|-------|
|            |          | Area      | Height  |          | Area         | Height         | LogD  |
| Experiment | RT (min) | mAU*min   | (mAU)   | RT (min) | mAU*min      | (mAU)          |       |
|            | 8.160    | 28.002    | 257.332 | 8.032    | 73.726       | 770.291        | 0.420 |
|            | 8.157    | 27.837    | 254.908 | 8.038    | 70.956       | 738.780        | 0.406 |
| 1          | 8.096    | 25.631    | 211.643 | 8.014    | 74.099       | 779.652        | 0.461 |
|            | 8.069    | 32.083    | 400.821 | 7.962    | 81.961       | 855.469        | 0.407 |
|            | 8.097    | 30.985    | 392.645 | 7.932    | 76.601       | 790.709        | 0.393 |
| 2          | 8.084    | 32.407    | 409.168 | 7.937    | 78.491       | 816.791        | 0.384 |
|            |          |           |         |          |              | $\overline{x}$ | 0.412 |
|            |          |           |         |          |              | σ              | 0.025 |

#### 3.7. Nfe[4Cl]-NH<sub>2</sub>

Table S22 – Retention time, peak area/minute and peak height for 0.3 mg/mL Nfe[Cl]-NH<sub>2</sub> at 25d4 nm.

|            |          | PBS Phase |        |          | Octanol Phas | e              |       |
|------------|----------|-----------|--------|----------|--------------|----------------|-------|
|            |          | Area      | Height |          | Area         | Height         | LogD  |
| Experiment | RT (min) | mAU*min   | (mAU)  | RT (min) | mAU*min      | (mAU)          |       |
|            | 11.366   | 0.440     | 5.002  | 11.231   | 3.718        | 27.466         | 0.927 |
| 1          | 11.372   | 0.481     | 5.564  | 11.229   | 3.540        | 29.144         | 0.867 |
|            | 11.375   | 0.476     | 5.482  | 11.201   | 3.893        | 30.824         | 0.912 |
|            | 11.426   | 0.427     | 4.985  | 11.216   | 3.773        | 29.874         | 0.947 |
| 2          | 11.444   | 0.454     | 5.204  | 11.236   | 3.165        | 26.783         | 0.844 |
|            | 11.427   | 0.458     | 5.196  | 11.201   | 3.901        | 30.742         | 0.930 |
|            |          |           |        |          |              | $\overline{x}$ | 0.904 |
|            |          |           |        |          |              | σ              | 0.037 |

#### $3.8.\ boc\text{-Nk-NH}_2$

Table S23 - Retention time, peak area/minute and peak height for 0.3 and 3 mg/mL Nk-NH $_2$  at 214 nm.

|             |           | PBS Phase |        | (        | Octanol Phas | е              |        |
|-------------|-----------|-----------|--------|----------|--------------|----------------|--------|
|             |           | Area      | Height |          | Area         | Height         | LogD   |
| Experiment  | RT (minu) | mAU*min   | (mAU)  | RT (min) | mAU*min      | (mAU)          |        |
|             | 9.879     | 2.01      | 18.982 | 9.747    | 1.9003       | 18.228         | -0.028 |
| 1           | 9.871     | 1.7212    | 18.303 | 9.747    | 1.9135       | 18.592         | -0.135 |
| (0.3 mg/mL) | 9.862     | 1.8131    | 18.837 | 9.762    | 1.9483       | 18.349         | -0.050 |
|             | 9.684     | 18.3723   | 93.121 | 9.507    | 18.1676      | 89.911         | -0.024 |
| 2 (2 mg/ml) | 9.605     | 19.0887   | 94.907 | 9.507    | 18.2537      | 90.632         | 0.046  |
| (3 mg/mL)   | 9.615     | 18.7249   | 95.06  | 9.493    | 18.5871      | 91.751         | 0.031  |
|             |           |           |        |          |              | $\overline{x}$ | 0.004  |
|             |           |           |        |          |              | σ              | 0.026  |

#### 3.9. boc-Nke-NH<sub>2</sub>

Table S24 – Retention time, peak area/minute and peak height for 3 mg/mL Nke-NH $_2$  at 214 nm.

|            |           | PBS Phase |         | (        | Octanol Phas | е              |        |
|------------|-----------|-----------|---------|----------|--------------|----------------|--------|
|            |           | Area      | Height  |          | Area         | Height         | LogD   |
| Experiment | RT (minu) | mAU*min   | (mAU)   | RT (min) | mAU*min      | (mAU)          |        |
|            | 8.064     | 31.2289   | 123.94  | 8.182    | 5.8504       | 44.741         | -0.727 |
|            | 8.06      | 31.3381   | 123.519 | 8.173    | 5.7686       | 44.586         | -0.735 |
| 1          | 8.074     | 30.5535   | 122.4   | 8.178    | 5.6239       | 43.763         | -0.735 |
|            | 8.061     | 33.4668   | 127.624 | 8.191    | 6.0177       | 45.579         | -0.745 |
| 2          | 8.066     | 31.7201   | 124.134 | 8.182    | 6.1794       | 45.497         | -0.710 |
|            | 8.079     | 30.6581   | 120.947 | 8.198    | 5.9123       | 44.451         | -0.715 |
|            |           |           |         |          |              | $\overline{x}$ | -0.728 |
|            |           |           |         |          |              | σ              | 0.012  |

#### 3.10 Nab-NH<sub>2</sub>

Table S25 - Retention time, peak area/minute and peak height for 3 and 5 mg/mL of Nab-NH $_2$  at 214 nm.

|            |         | PBS Phase |         |         | Octanol Phase |         |                |        |
|------------|---------|-----------|---------|---------|---------------|---------|----------------|--------|
|            | Conc    |           | Area    | Height  |               | Area    | Height         | LogD   |
| Experiment | (mg/mL) | RT (min)  | mAU*min | (mAU)   | RT (min)      | mAU*min | (mAU)          |        |
|            | 3       | 3.130     | 29.870  | 124.185 | 3.234         | 1.916   | 16.583         | -1.193 |
| 1          | 3       | 3.144     | 31.491  | 106.600 | 3.229         | 1.939   | 16.013         | -1.211 |
|            | 3       | 3.128     | 29.808  | 122.223 | 3.218         | 1.874   | 15.841         | -1.202 |
|            | 5       | 3.044     | 50.018  | 171.128 | 3.149         | 2.620   | 22.595         | -1.281 |
| 2          | 5       | 3.015     | 49.848  | 176.143 | 3.142         | 2.747   | 24.285         | -1.259 |
|            | 5       | 3.015     | 52.605  | 183.445 | 3.133         | 2.932   | 25.126         | -1.254 |
|            |         |           |         |         |               |         | $\overline{x}$ | -1.233 |
|            |         |           |         |         |               |         | σ              | 0.033  |

#### 5. Computational Details

#### 5.1. Swarm-CG Optimisations

#### 5.1.1 Atomistic MD

In all cases the starting structure for the simulation was the lowest energy conformer in the gas phase which was obtained using the GFN-FF metadynamics Conformer/Rotameter Ensemble Sampling Tool (CREST).<sup>5</sup> The structure was then solvated with TIP3P in a box of dimensions 3.8 x 3.8 x 3.8 nm. To generate a Gromacs readable topology file from the CGenFF peptoid parameters the TopoTools VMD plugin was used (command line: topo writegmxtop).<sup>6</sup> Following this the structure was minimised using the steep integrator for 100,000 steps (emtol = 100 kJ mol<sup>-1</sup> nm<sup>-1</sup>). A Verlet cutoff-scheme was used. Van der Waals interactions were calculated below a cutoff of 1.2 nm with a force-switch as the vdw-modifier beginning at 1.0 nm. Electrostatic interactions were calculated below a cutoff of 1.2 nm, beyond which particle-mesh Ewald (PME) summation was used to calculate long-range interactions, using a grid spacing of 0.12 nm. Additional setting for CHARMM simulations within Gromacs details can be found on the Gromacs website.<sup>7</sup> Hydrogen bonds were constrained using the LINCS algorithm.<sup>8</sup> These core settings were used in all subsequent steps.

The system was then simulated in the NVT ensemble with a leap-frog algorithm (1,000,000 steps, ts = 1 fs, 1ns). A velocity rescaling algorithm was used to maintain a temperature of 298.15 K with a time constant of 1.0 ps. Velocities were generated according to a Maxwell distribution at the given temperature using a random seed. Following this a short NPT ensemble treatment of the system was done with isotropic pressure coupling using a Parrinello-Rahman barostat (200,000 steps, ts = 1 fs, 0.2 ns). A reference pressure of 1.01325 bar, time constant of 1.0 ps and compressibility of  $4.5 \times 10^{-5}$  bar<sup>-1</sup> with velocity rescaling were used. The production simulation, from which atomistic position data was obtained, was also in the NPT ensemble (5,000,000 steps, ts = 2 fs, 10 ns) here Nose-Hoover temperature coupling was used with a 1.0 ps time constant additionally the time constant for pressure coupling was 2.0 ps. To ensure adequate coupling of velocities the molecule, solvent and ions were treated as separate coupling groups. This method follows that adopted by Zhao *et al.* in the simulation of peptoid nanosheets.<sup>9</sup>

#### 5.1.2 Coarse-Grained MD Optimisations

A peptoid was solvated in 5 x 5 x 5 nm box with Martini water and minimised using the steep integrator for 100,000 steps (emtol =  $10 \text{ kJ mol}^{-1} \text{ nm}^{-1}$ ). The Martini straight cut-off scheme of 1.1 nm was used for both electrostatic and VdW interactions, for the latter reaction-field electrostatics were used and a dielectric screening constant of 15 was used. A Potential-shift-verlet vdw-modifier was used. Constraints were handled using the LINCS algorithm.<sup>8</sup> Following the minimisation, a short NPT ensemble equilibration followed (40,000 steps, ts = 25 fs, 1ns). Velocity rescaling (v-rescale) was used to maintain a temperature of 298.15 K (tau-t = 1.0 ps). For pressure control Berendsen pressure coupling was used with semiisotropic pressure coupling, a 12.0 ps time constant was used. In all dimensions a compressibility of  $3.0 \times 10^{-4} \text{ bar}^{-1}$  was used with a reference pressure

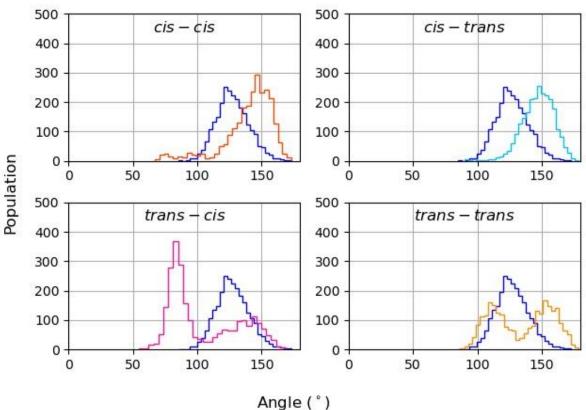
of 1.0 bar and time constant of 12.0 ps. To ensure adequate coupling of velocities the molecule, solvent and ions were treated as separate coupling groups. These same simulation settings were also used in the subsequent production run also for the SWARM-CG optimisation.

#### 5.1.3 Coarse-Grained MD Evaluations

Simulations were performed to utilise SWARM-CG in evaluate mode (scg\_evaluate) to generate the plots = in Section 6.0. The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations. Some small differences exist in the ensemble treatment in the NPT production simulation. Specifically, Parrinello-Rahman pressure coupling was used with isotropic pressure coupling and the same time-constant, compressibility and reference pressure. Note these evaluations were also undertaken yielding the same number of frames as the reference atomistic trajectory (1,000,000, ts = 25 fs, 25 ns).

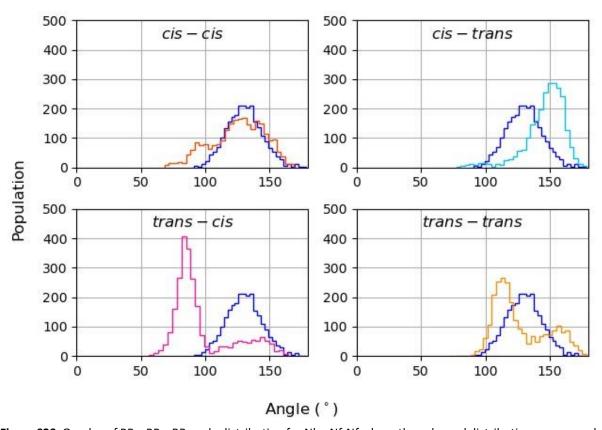
#### 5.2. Umbrella Sampling and WHAM

To evaluate the Umbrella Sampling (US) method used to fit non-bonded parameters for the peptoid monomers we applied it to evaluating the LogD of the amino acids modelled in the Martini 2.1 protein forcefield (Note: we started with the files from the Martini tutorial on free-energy techniques. <sup>10</sup> The only significant difference being use of a target temperature of 298.15 K and reference pressure of 1.01325 bar to reflect the laboratory experiments. An additional minimisation step of the starting system done prior to the system preparation outlined in the tutorial. Also, in the production run a 1100 kJ mol<sup>-1</sup> harmonic potential in the production step, where a force constant of 1000 kJ mol<sup>-1</sup> was used in window set-up and equilibration). The number of bins used was 200 and 100 Bootstraps were used.


#### 5.3. Backbone Angle Parameterisation

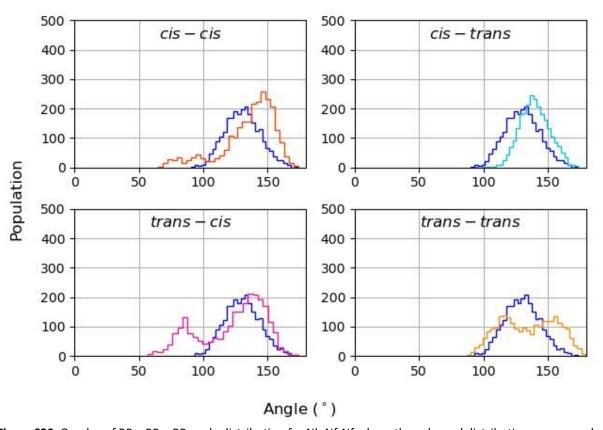
#### 5.3.1 Multimolecular Systems

**Atomistic MD:** Each system was composed of 25 molecules that were solvated with TIP3P water to a concentration of ~ 0.65 M (mg/mL), chlorine ions were added to ensure system neutrality as required for use of Particle Mesh Ewald (PME) electrostatics. A PME grid spacing of 0.1 Å was used throughout to treat long range electrostatic interactions. Lennard Jones interactions were smoothly shifted to zero at a cutoff of 1.2 nm. All systems were built using Gromacs<sup>11</sup> and visualized using visual molecular dynamics (VMD).<sup>12</sup> All systems were initially minimized for 10,000 steps; this was followed by heating to 298.15 K from 0 K in 10-degree increments increasing every 1,000 steps (80,000 steps total). Then the systems were equilibrated for (2,000,000 steps, ts = 2 fs, 4 ns) with a Langevin thermostat, employing a damping factor of 5 and a Langevin barostat with a reference pressure of 1.01325 bar. Following this, a production simulation using the same conditions was carried out for 50 ns. NAMD version 2.15 was used for all MD simulations.<sup>13</sup> A 2fs timestep was used throughout. Mapping data is shown in Figures S28 – S31.


**CG-MD:** The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations. After minimisation using the steep integrator for 100,000 steps. A short equilibration was done (500,000 steps, ts = 20 fs, 10 ns) with velocity rescaling to maintain a temperature of 298.15 K and with a time constant of 0.1 ps to improve stability. To ensure adequate coupling of velocities the molecule, solvent and ions were treated as separate coupling groups. A Berendsen barostat was used with isotropic pressure coupling and with 12 ps time constant. A compressibility of 3.0x10<sup>-4</sup> bar<sup>-1</sup> was used with a reference pressure of 1.01325 bar. Temperatures were generated using according to a Maxwell distribution at the given temperature using a random seed. In the production simulation (1,000,000 steps, ts = 25 fs, 50 ns), from which angle measurements were made, the temperature coupling time was increased to 1.0 ps and a Parrinello-Rahman barostat was used with the same time constant, compressibility and reference pressure as the equilibration step.

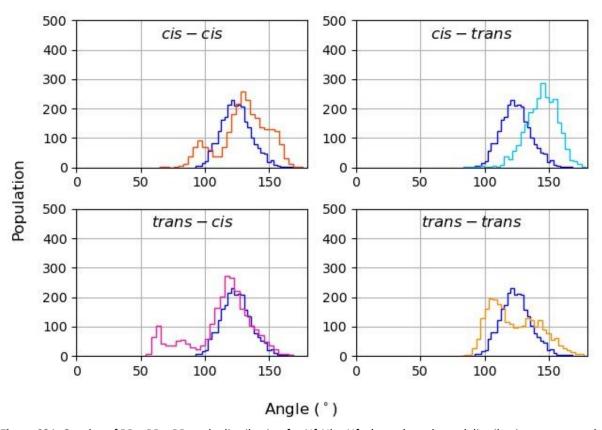
# Nf-Nk-Nf/127.253




**Figure S28.** Overlay of BB – BB – BB angle distribution for Nf-Nk-Nf where the coloured distribution corresponds to that backbone conformation while the blue is the CG estimate, angles from 25 molecules molecule for 50 ns. Good agreement is obtained for all sequence states considered.

# Nke-Nf-Nf/129.99




**Figure S29.** Overlay of BB – BB – BB angle distribution for Nke-Nf-Nf where the coloured distribution corresponds to that backbone conformation while the blue is the CG estimate, angles from 25 molecules molecule for 50 ns. Good agreement is obtained for all sequence states considered.

# Nk-Nf-Nf/130.213

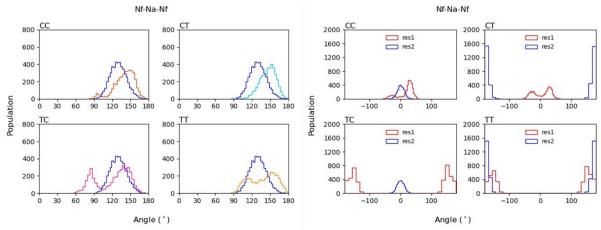


**Figure S30.** Overlay of BB – BB – BB angle distribution for Nk-Nf-Nf where the coloured distribution corresponds to that backbone conformation while the blue is the CG estimate, angles from 25 molecules molecule for 50 ns. Good agreement is obtained for all sequence states considered.

# Nf-Nke-Nf/124.304



**Figure S31.** Overlay of BB – BB – BB angle distribution for Nf-Nke-Nf where the coloured distribution corresponds to that backbone conformation while the blue is the CG estimate, angles from 25 molecules molecule for 50 ns. Good agreement is obtained for all sequence states considered.


# 5.3.2 Single Molecule Systems

**Atomistic MD:** In this work the same parameters and set-up as described in 5.1.1 was done. The system was minimized initially for 10,000,000 steps (emtol =  $100 \text{ kJ mol}^{-1} \text{ nm}^{-1}$ ). The equilibration step was then done in the NPT ensemble with the Berendsen barostat (tau-p = 1.0 ps) for (3,000,000 steps, ts=2fs, 6 ns) with velocity generation to a Maxwell distribution which was maintained by the v-rescale method (tau-t = 1.0 ps) and the 100 ns production simulation (50,000,000 steps, ts=2fs, 100ns) employed a Parrinello-Rahman barostat and (tau-p = 2.0 ps) Nose-hoover thermostat (tau-t = 1.0 ps).

Comparison of backbone angle (as,  $BB_1 - BB_2 - BB_3$ ) for single molecules give generally good agreement between CG angle distributions and all amide states at the AA level of detail (Figures S32 – S38).  $\omega$  distributions for each residue of the trimers are included to highlight how in Nfes-X-Nfes sequences that a transition from *trans* to *cis* occurs over the 100 ns simulation (Figures S39 – S41). This is in line with chemical expectations, where the Nfes residue is a *cis* amide promoting monomer. Despite this good agreement between the CG and AA levels of detail are preserved.

**CG-MD:** The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations. The system was minimized initially for 100,000 steps (emtol = 1 kJ mol<sup>-1</sup> nm<sup>-1</sup>). Followed by an equilibration (4,000,000 steps, ts = 25 fs, 100 ns) with an isotropic Berendsen barostat and v-rescale thermostat,

pressure coupling 5.0 ps and a temperature coupling time of 1.0 ps. The target pressure was 1.0135 bar, compressibility of 3x10-4 bar<sup>-1</sup>, and temperature was 298.15 K.



**Figure S32.** Overlay of BB - BB - BB angle distribution for Nf-Na-Nf where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns. Amide  $\omega$  torsions are provided and conform to the expected sequence state.

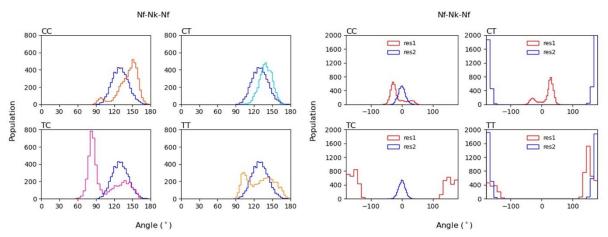



Figure S33. Overlay of BB – BB – BB angle distribution for Nf-Nk-Nf where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns. Amide  $\omega$  torsions are provided and conform to the expected sequence state.

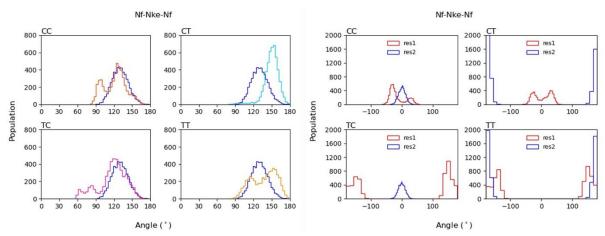



Figure S34. Overlay of BB - BB - BB angle distribution for Nf-Nke-Nf where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns. Amide  $\omega$  torsions are provided and conform to the expected sequence state.

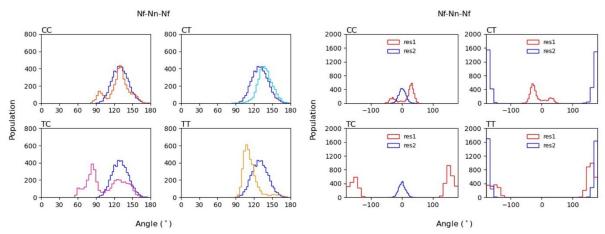



Figure S35. Overlay of BB – BB – BB angle distribution for Nf-Nn-Nf where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns. Amide  $\omega$  torsions are provided and conform to the expected sequence state.

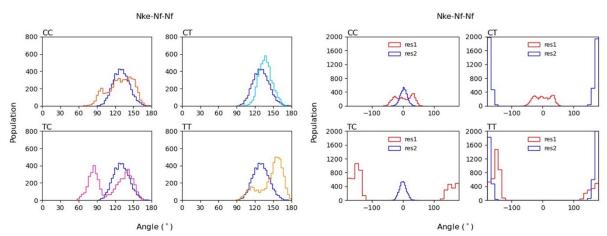



Figure S36. Overlay of BB - BB - BB angle distribution for Nke-Nf-Nf where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns. Amide  $\omega$  torsions are provided and conform to the expected sequence state.

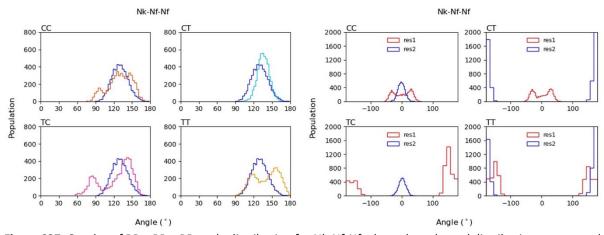
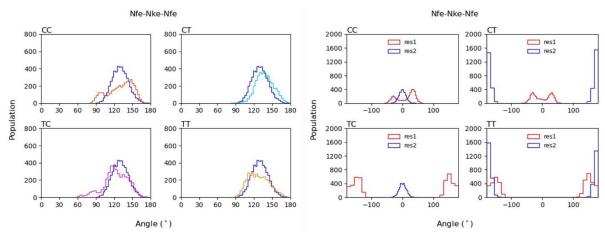




Figure S37. Overlay of BB – BB – BB angle distribution for Nk-Nf-Nf where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns Amide  $\omega$  torsions are provided and conform to the expected sequence state.



**Figure S38.** Overlay of BB - BB - BB angle distribution for Nfe-Nke-Nfe where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns Amide  $\omega$  torsions are provided and conform to the expected sequence state.

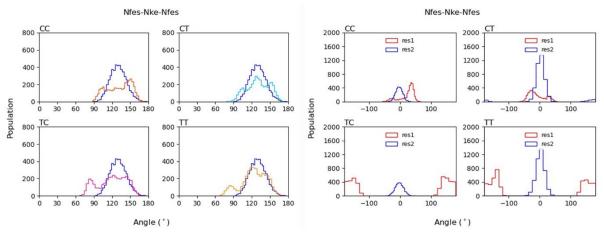



Figure S39. Overlay of BB - BB - BB angle distribution for Nfes-Nke-Nfes where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns. Amide  $\omega$  torsions exhibit a switch where the second residue is *trans*, following expectations that Nfes residues promote this confromation.

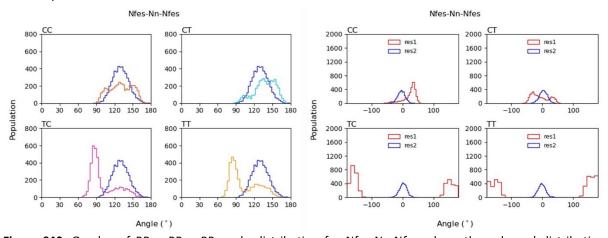



Figure S40. Overlay of BB - BB - BB angle distribution for Nfes-Nn-Nfes where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate, single molecule for 100 ns. Amide  $\omega$  torsions exhibit a switch where the second residue is *trans*, following expectations that Nfes residues promote this confromation.

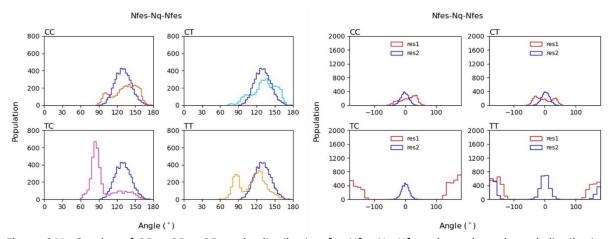
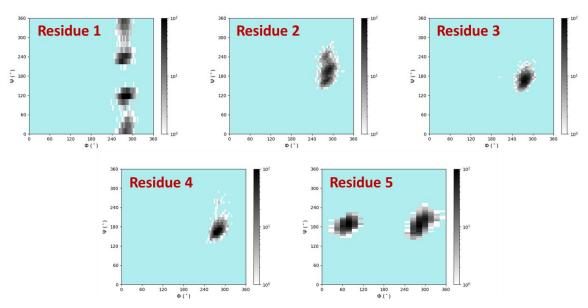
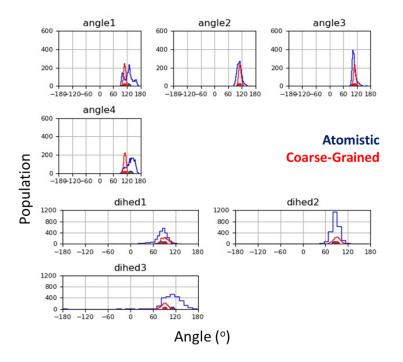




Figure S41. Overlay of BB - BB - BB angle distribution for Nfes-Nq-Nfes where the coloured distribution corresponds to specific amide backbone conformation while the blue is the CG estimate. Amide  $\omega$  torsions exhibit a switch where the second residue is *trans*, following expectations that Nfes residues promote this conformation.


# 5.4. Peptoid Helix Simulations

#### 5.4.1 Atomistic MD

A hexameric peptoid (Nk-Nfes-Nfes)<sub>2</sub> was solvated with TIP3P water and chloride ions in 4 x 4 x 4 nm after minimisation using the system settings described in Section 5.1.1. The following treatment was performed, firstly an NVT ensemble was applied to the system with velocity generation; velocity rescaling was to a reference temperature of 298.15 K with a time constant of 1.0 ps (3,000,000 steps, ts = 1 fs, 3 ns). Following this an NPT ensemble was applied using the same temperature coupling and isotropic Berendsen pressure coupling, with a time constant of 1.0 ps, compressibility of  $4.5 \times 10^{-5}$  bar<sup>-1</sup>, target pressure of 1.01325 bar (3,000,000 steps, ts = 2 fs, 6 ns). The production run employed the NPT ensemble with Nose-Hoover temperature coupling, isotropic Parrinello-Rahman pressure coupling for which a time constant of 2.0 ps was used (50,000,000 steps, ts = 2 fs, 100 ns).



**Figure S42.**  $\phi/\psi$  sampling for helical peptoid fragement (Nk-Nfes-Nfes)<sub>2</sub> on a per torsion pair basis. Sampling of the  $\alpha_D$  region is an indicator that our representation of the Nfes residue, within a helical structure, adopts the correct backbone torsions. The increased degrees of freedom at residue 1 and 5 are thought to be due to the absence of helix enforcing residues at one flank of either torsion. (number of bins = 30).



**Figure S43**. Comparison of atomistic and coarse-grained angle and dihedral distributions for 100 ns of simulation, using a Centre of Geometry (COG) mapping scheme; good agreement in the magnitude and locations of both terms are found in this duplicate experiment to that in the main text indicating that the selected parameters accurately reproduce the higher theory level sampling.

#### 5.4.2 Coarse-Grained MD

A hexameric CG peptoid (Nk-Nfex-Nfex)<sub>2</sub> was solvated in a  $5 \times 5 \times 5$  nm box with Martini water and chloride ions. The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations. Minimisation was for 10,000 steps (emtol = 100 kJ mol<sup>-1</sup> nm<sup>-1</sup>). For the equilibration (500,000, ts = 10fs, 5 ns) and production (5,000,000, ts = 20fs, 100 ns) steps velocity rescaling was used to maintain a constant temperature of 298.15 K (tau-t = 1.0 ps). Isotropic pressure coupling was done using Berendsen and Parrinello-Rahman barostat for the equilibration and production stages respectively (tau-p = 12.0 ps). The reference pressure was 1.01325 bar with a compressibility of  $3.0 \times 10^{-4}$  bar<sup>-1</sup>. Temperatures were generated according to a Maxwell distribution using a pseudo random seed (gen\_seed = -1). To ensure adequate coupling of velocities the molecule, solvent and ions were treated as separate coupling groups.

#### 5.5. Self-Assembly Screening

#### 5.5.1 Assembly of dipeptoid Nf-Nf

For this experiment 300 molecules were inserted into a 12.5 x 12.5 x 12.5 nm equilibrated water box with a minimum separation radius of 0.3 nm. The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations. Minimisation was for 100,000 steps (emtol = 1 kJ mol<sup>-1</sup> nm<sup>-1</sup>). For the equilibration (400,000 steps, ts = 25 fs, 10 ns) and production (10,000,000 steps, ts = 25 fs, 250 ns) steps velocity rescaling was used to maintain a constant temperature of 298.15 K (tau-t = 1.0 ps). To ensure adequate coupling of velocities the molecules and solvent were treated as separate coupling groups. Isotropic pressure coupling was done using Berendsen and Parrinello-Rahman barostat for the equilibration and production stages respectively (tau-p = 12.0 ps). The reference pressure was 1.01325 bar with a compressibility of  $3.0x10^{-4} \, \text{bar}^{-1}$ . Temperatures were generated according to a Maxwell distribution using a pseudo random seed (gen\_seed = -1).

# 5.5.2 Single Monomer Assembly Screening

For this experiment 600 molecules were inserted into a 12.5 x 12.5 x 12.5 nm equilibrated water box with a minimum radius of separation of 0.3 nm and neutralised as required. The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations. Minimisation was for 100,000 steps (emtol = 1 kJ mol<sup>-1</sup> nm<sup>-1</sup>). The treatment of the NPT ensemble in equilibration and production followed that of outlined in 5.5.1. The equilibration duration was (40,000 steps, ts = 25 fs, 1 ns) and production duration was (8,000,000 steps, ts = 25 fs, 200 ns).

# 5.6. Peptoid Nanosheet Simulations

The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations. Minimisation was for 100,000 steps (emtol = 1 kJ mol $^{-1}$ nm $^{-1}$ ). The treatment of the NPT ensemble in equilibration and production followed that of outlined in 5.5.1. Here a 10 fs timestep was used. The equilibration duration was (100,000 steps, ts = 10 fs, 10 ns) and production duration was (25,000,000 steps, ts = 10 fs, 250 ns).

# 5.7. Peptoid Tape Simulations

Minimisation was for 10,000 steps (emtol =  $100 \text{ kJ mol}^{-1} \text{ nm}^{-1}$ ). The same treatment of VdW and electrostatics as in section 5.1.2 was used for each step of these simulations and the treatment of the NPT ensemble in equilibration and production followed that of outlined in 5.5.1. The equilibration duration was (100, 000 steps, ts = 25 fs, 10 ns) and production duration was (6,000,000 steps, ts = 25 fs, 150 ns).

# 5.8. Free Assembly of Nf-Nke-Nf

300 tripeptoids were solvated in the same manner as outlined in 5.5.2 and run as outlined in 5.3.2. Minimisation was for 100,000 steps (emtol = 1 kJ mol $^{-1}$  nm $^{-1}$ ). The production simulation (6,250,000 steps, ts= 40ns, 250ns) employed a Berendsen barostat (tau-p = 8.0), results for these duplicate experiments shown in Figure S94.

# 6. Bead Mapping

Blue distributions correspond to the *mid* parameter for a given residue and pink the specific amide state.

# 6.1 Nab

FITNESS SCORE Ital: 20.476 -- Constraints/Bonds: 8.802 -- Angles: 11.674 -- Dihedrals: 0

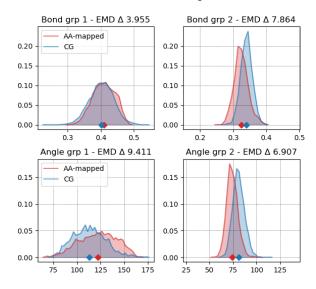



Figure S44. Nab in the cis amide conformation.

FITNESS SCORE ptal: 31.94 -- Constraints/Bonds: 9.839 -- Angles: 22.101 -- Dihedrals: 0.

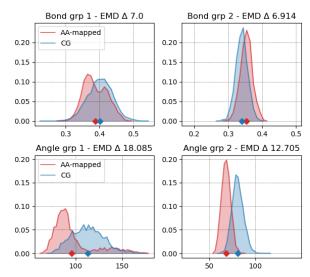



Figure S45. Nab in the trans amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 2: BBn - BBn+1

Angle 1: SC1 - BBn - BBn+1

FITNESS SCORE Fotal: 24.235 -- Constraints/Bonds: 5.7 -- Angles: 18.535 -- Dihedrals: 0.0

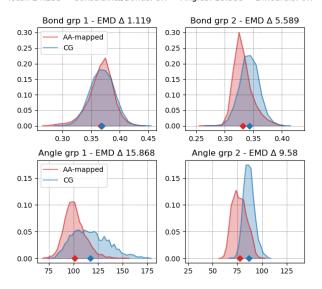



Figure \$46. Nd in the cis amide conformation.

FITNESS SCORE tal: 39.886 -- Constraints/Bonds: 15.69 -- Angles: 24.196 -- Dihedrals: 0

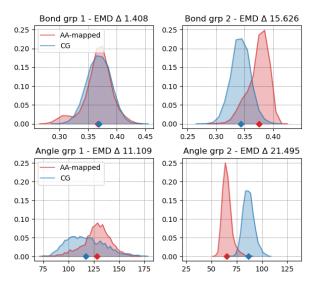



Figure S47. Nd in the trans amide conformation.

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

 $\underline{Angle~2:}~SC1-BB_{n+1}-BB_{n}$ 

FITNESS SCORE otal: 14.145 -- Constraints/Bonds: 4.773 -- Angles: 9.371 -- Dihedrals: 0.

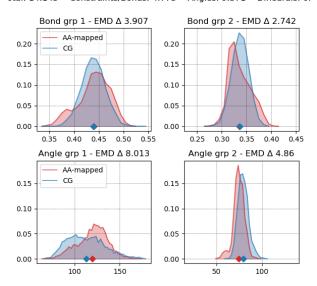



Figure S48. Ne in the *cis* amide conformation.

FITNESS SCORE tal: 29.347 -- Constraints/Bonds: 17.429 -- Angles: 11.917 -- Dihedrals: (



Figure S49. Ne in the *trans* amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 2: BBn - BBn+1

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

 $\underline{Angle~2:}~SC1-BB_{n+1}-BB_{n}$ 

#### FITNESS SCORE Total: 41.733 -- Constraints/Bonds: 21.962 -- Angles: 17.207 -- Dihedrals: 2.565

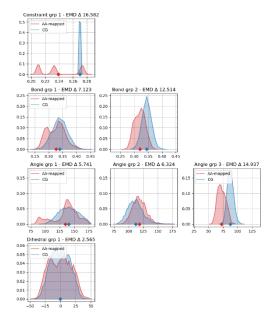



Figure \$50. Nf in the cis amide conformation.

FITNESS SCORE Total: 51.168 -- Constraints/Bonds: 20.706 -- Angles: 28.754 -- Dihedrals: 1.709

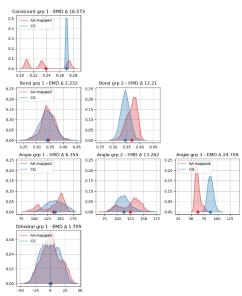



Figure S51. Nf in the trans amide conformation.

Constraint 1: SC1-SC2/SC2-SC3/SC3-SC1

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1:  $\{BB_n, BB_{n+1}\}$  – SC1 – SC2

Angle 2:  $SC1 - BB_n - BB_{n+1}$ 

Angle 3: SC1 - BB<sub>n+1</sub> - BB<sub>n</sub>

Improper Dihedral 1: {BBn, BB n+1}- SC2 - SC3 - SC1

# 6.5 Nf[naph]

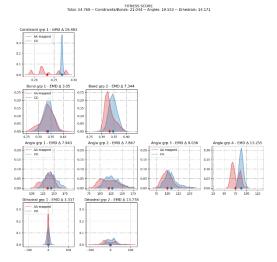



Figure S52. Nf[naph] in the cis amide conformation.

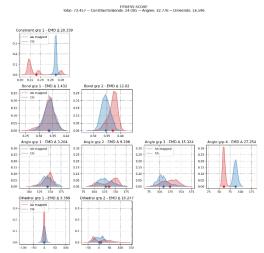



Figure \$53. Nf[naph] in the trans amide conformation.

Constraint 1: SC1-SC2/SC2-SC3/SC3-SC1/etc.

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1:  $\{BB_n, BB_{n+1}\} - SC1 - SC2$ 

Angle 1:  $\{BB_n, BB_{n+1}\} - SC1 - SC3$ 

Angle 2:  $SC1 - BB_n - BB_{n+1}$ 

 $Angle \ 3: \ SC1 - BB_{n+1} - BB_n$ 

Improper Dihedral 1: SC1- SC3 -SC4-SC2

# 6.6 Nfe

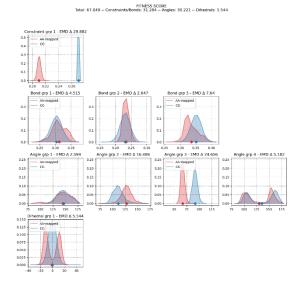



Figure S54. Nfe in the cis amide conformation.

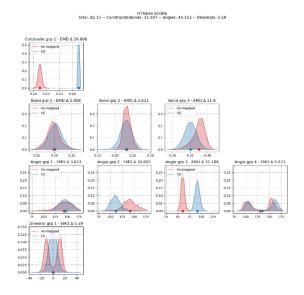



Figure \$55. Nfe in the trans amide conformation.

Constraint 1: SC1-SC2/SC2-SC3/SC3-SC1 Angle 4: SC1 – SC2 – {SC3, SC4

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1 Improper Dihedral 1: SC1 - SC3 - SC4 - SC2

Bond 2: SC1 - SC2

Bond 3:  $BB_n - BB_{n+1}$ 

Angle 1:  $BB_n - SC1 - SC2$ 

 $Angle\ 2:\ SC1-BB_n-BB_{n+1}$ 

Angle 3:  $SC1 - BB_{n+1} - BB1_n$ 

# 6.7 Nfe[4Br]

#### FITNESS SCORE Total: 87.793 -- Constraints/Bonds: 53.446 -- Angles: 27.62 -- Dihedrals: 6.727

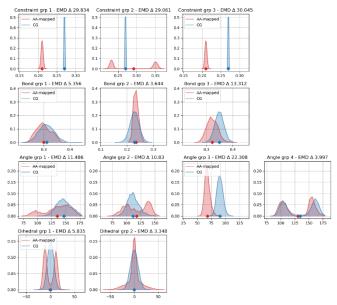



Figure S56. Nfe[4Br] in the cis amide conformation.

FITNESS SCORE Total: 99.194 -- Constraints/Bonds: 52.98 -- Angles: 39.866 -- Dihedrals: 6.348

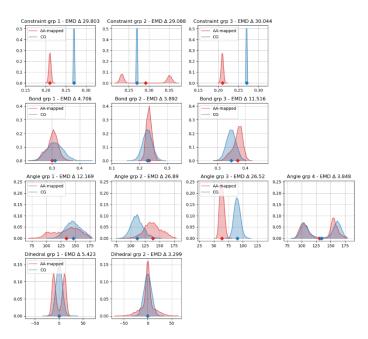



Figure S57. Nfe[4Br] in the trans amide conformation.

Constraint 1: SC2-SC3/SC2-SC4

Constraint 2: SC5-SC3/SC5-SC4

Constraint 3: SC4-SC5

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1

Bond 2: SC1 - SC2

Bond 3:  $BB_n - BB_{n+1}$ 

Angle 1:  $\{BB_n, BB_{n+1}\}$  – SC1 – SC2

Angle 2:  $SC1 - BB_n - BB_{n+1}$ 

Angle 3: SC1 - BB<sub>n+1</sub> - BB<sub>n</sub>

Angle 4: SC1 - SC2 - {SC3, SC4}

Improper Dihedral 1: SC1 – SC3 – SC4 – SC2

# 6.8 Nfex

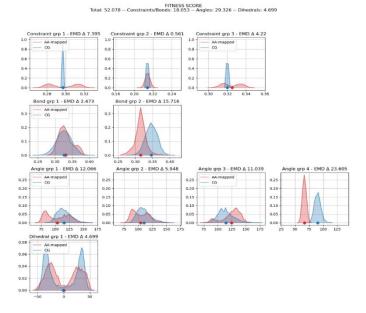



Figure \$58. Nfer in the cis amide conformation.




Figure S59. Nfer in the trans amide conformation.

Constraint 1: SC1-SC2 Angle 1:  $\{BB_n, BB_{n+1}\}$  – SC1 – SC2

 $\label{eq:constraint 2: SC2-SC3} \text{Angle 2: } \{BB_n, \, BB_{\,n+1}\} - SC1 - SC3$ 

Constraint 3: SC3-SC1 Angle 3: SC1 – BB  $_{n+1}$  – BB  $_{n}$ 

 $Bond \ 1: \{BB_n, \ BB_{n+1}\} - SC1 \\ Angle \ 4: \ SC1 - BB_n - BB_{n+1}$ 

Bond 2:  $BB_n - BB_{n+1}$  Improper Dihedral 1: SC1 - SC3 - SC4 - SC2

# 6.9 Nfn

FITNESS SCORE Total: 46.844 -- Constraints/Bonds: 29.318 -- Angles: 17.526 -- Dihedrals: 0.0

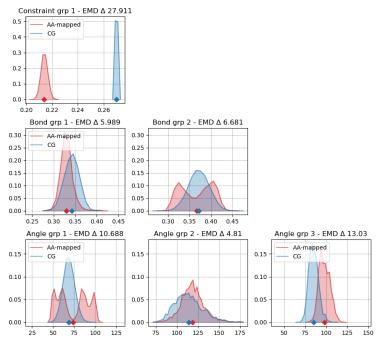



Figure S60. Nfn in the trans amide conformation.

Constraint: SC1 - SC2

Bond 1: BB<sub>n</sub>-BB<sub>n+1</sub>

Bond 2:  $\{BB_n, BB_{n+1}\}$  – SC1

Angle 1:  $\{BB_n, BB_{n+1}\} - \{SC1 - SC2, SC2 - SC1\}$ 

Angle 2:  $SC1 - BB_n - BB_{n+1}$ 

Angle 3:  $SC1 - BB_{n+1} - BB_n$ 

FITNESS SCORE tal: 31.564 -- Constraints/Bonds: 13.977 -- Angles: 17.587 -- Dihedrals: (

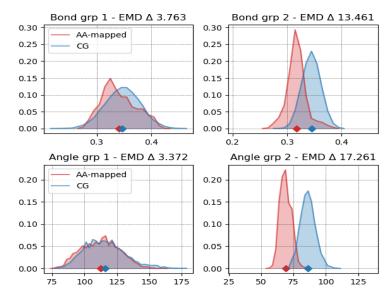



Figure S61. Ni in the cis amide conformation.

FITNESS SCORE tal: 42.996 -- Constraints/Bonds: 6.387 -- Angles: 36.609 -- Dihedrals: 0

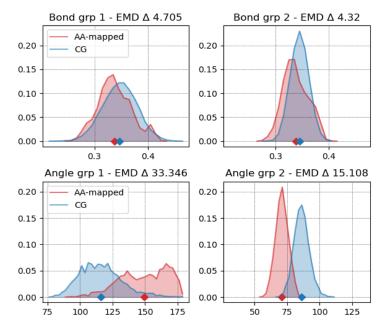



Figure S62. Ni in the trans amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

FITNESS SCORE Total: 26.942 -- Constraints/Bonds: 12.087 -- Angles: 14.855 -- Dihedrals: 0.0

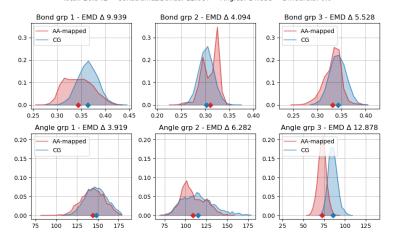



Figure S63. Nk in the cis amide conformation.

FITNESS SCORE
Total: 46.201 -- Constraints/Bonds: 13.474 -- Angles: 32.727 -- Dihedrals: 0.0

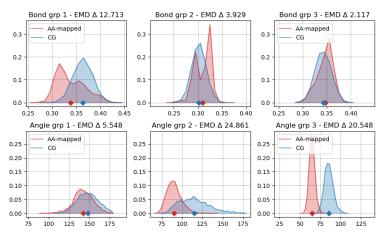



Figure S64. Nk in the trans amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 1: SC1 - SC2 & SC1 - SC2

Bond 3:  $BB_n - BB_{n+1}$ 

Angle 1:  $\{BB_n, BB_{n+1}\}$  – SC1 – SC2

Angle 2: SC1 - BBn - BBn+1

# 6.13 Nke

FITNESS SCORE tal: 36.248 -- Constraints/Bonds: 19.856 -- Angles: 16.392 -- Dihedrals: (

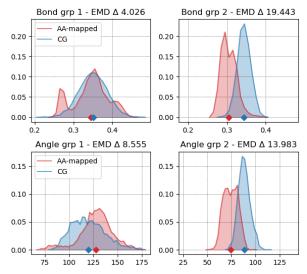
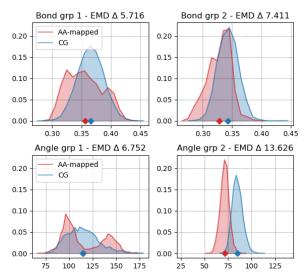



Figure S65. Nke in the cis amide conformation.

FITNESS SCORE tal: 34.303 -- Constraints/Bonds: 14.612 -- Angles: 19.691 -- Dihedrals: (




Figure S66. Nke in the trans amide conformation.

Bond 1:  $BB_n - SC1 & BB_{n+1} - SC1$ 

Bond 2: BBn - BBn+1

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

FITNESS SCORE tal: 24.567 -- Constraints/Bonds: 9.359 -- Angles: 15.208 -- Dihedrals: 0



**Figure S67.** NI in the cis amide conformation.

FITNESS SCORE Ital: 45.793 -- Constraints/Bonds: 8.842 -- Angles: 36.951 -- Dihedrals: 0

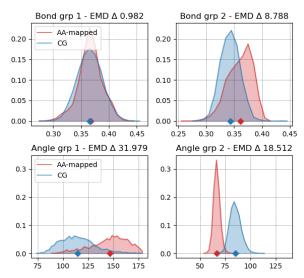



Figure S68. NI in the trans amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 2: BBn - BBn+1

Angle 1: SC1 - BBn - BBn+1

Angle 2: SC1 - BB<sub>n+1</sub> - BB<sub>n</sub>

FITNESS SCORE tal: 23.772 -- Constraints/Bonds: 12.003 -- Angles: 11.769 -- Dihedrals: (

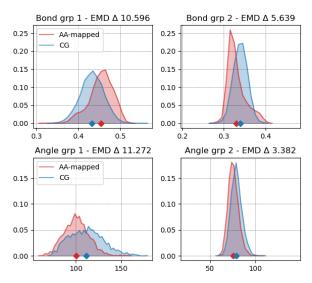



Figure S69. Nm in the cis amide conformation.

FITNESS SCORE tal: 34.964 -- Constraints/Bonds: 11.395 -- Angles: 23.57 -- Dihedrals: 0

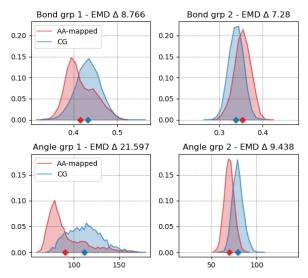



Figure S70. Nm in the trans amide conformation.

 $\underline{Bond\ 1:}\ \{BB_n,\ BB_{n+1}\}-SC1$ 

Bond 2:  $BB_n - BB_{n+1}$ 

 $\underline{Angle~1}:~SC1-BB_n-BB_{n+1}$ 

FITNESS SCORE otal: 22.521 -- Constraints/Bonds: 4.711 -- Angles: 17.81 -- Dihedrals: 0.

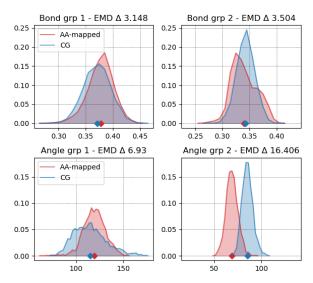



Figure S71. NmO in the cis amide conformation.

FITNESS SCORE tal: 44.431 -- Constraints/Bonds: 12.206 -- Angles: 32.225 -- Dihedrals: (

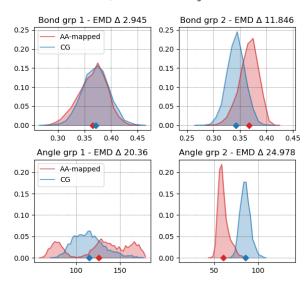



Figure \$72. NmO in the trans amide conformation.

 $\underline{Bond\ 1:}\ \{BB_n,\ BB_{n+1}\}-SC1$ 

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

FITNESS SCORE tal: 32.305 -- Constraints/Bonds: 11.761 -- Angles: 20.544 -- Dihedrals: (

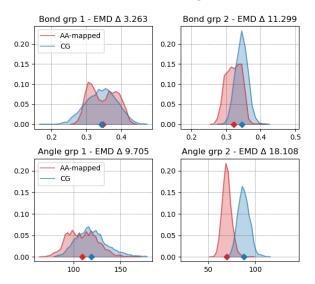



Figure \$73. Nn in the cis amide conformation.

FITNESS SCORE tal: 38.919 -- Constraints/Bonds: 14.323 -- Angles: 24.597 -- Dihedrals: (

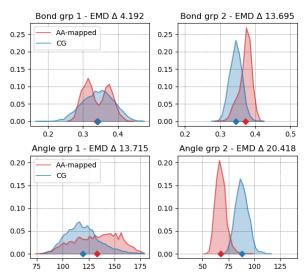



Figure S74. Nn in the trans amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 2: BBn - BBn+1

Angle 1: SC1 - BBn - BBn+1

Angle 2: SC1 - BB<sub>n+1</sub> - BB<sub>n</sub>

FITNESS SCORE tal: 24.509 -- Constraints/Bonds: 18.847 -- Angles: 5.662 -- Dihedrals: 0

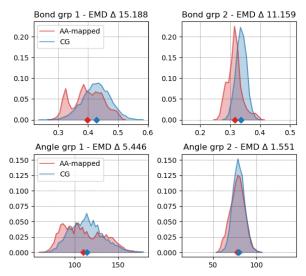



Figure \$75. Nq in the cis amide conformation.

FITNESS SCORE tal: 43.457 -- Constraints/Bonds: 17.439 -- Angles: 26.018 -- Dihedrals: (

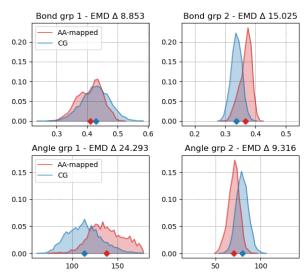



Figure \$76. Nq in the trans amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

# 6.19 Nr

FITNESS SCORE Total: 22.93 -- Constraints/Bonds: 10.02 -- Angles: 12.911 -- Dihedrals: 0.0

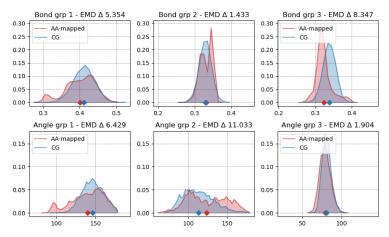



Figure \$77. Nr in the cis amide conformation.

FITNESS SCORE
Total: 35.852 -- Constraints/Bonds: 21.035 -- Angles: 14.816 -- Dihedrals: 0.0

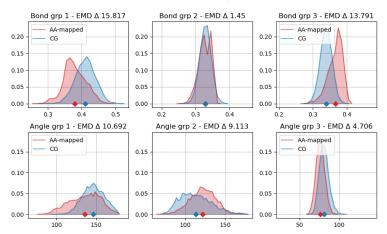



Figure \$78. Nr in the trans amide conformation.

Bond 1:  $\{BB_n, BB_{n+1}\}$  - SC1

Bond 1: SC1 - SC2 & SC1 - SC2

Bond 3:  $BB_n - BB_{n+1}$ 

Angle 1:  $\{BB_{n}, BB_{n+1}\}$  – SC1 – SC2

Angle 2: SC1 - BBn - BBn+1

FITNESS SCORE tal: 44.09 -- Constraints/Bonds: 16.362 -- Angles: 27.727 -- Dihedrals: 0

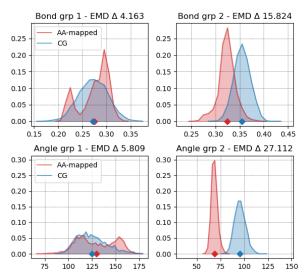
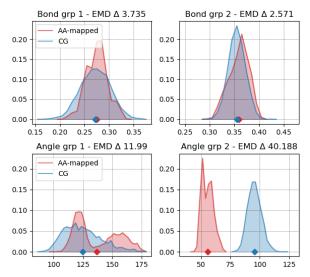




Figure \$79. Ns in the cis amide conformation.

ITINESS SCORE Ital: 46.473 -- Constraints/Bonds: 4.534 -- Angles: 41.938 -- Dihedrals: 0



 $\textbf{Figure S80.} \ \ \text{Ns in the trans amide conformation}.$ 

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1: SC1 - BBn - BBn+1

FITNESS SCORE tal: 26.581 -- Constraints/Bonds: 13.141 -- Angles: 13.44 -- Dihedrals: 0

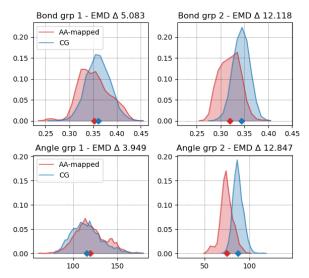



Figure S81. Nse in the cis amide conformation.

FITNESS SCORE tal: 47.907 -- Constraints/Bonds: 21.601 -- Angles: 26.306 -- Dihedrals: (

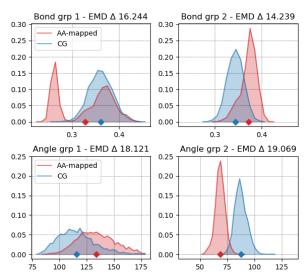



Figure \$82. Nse in the trans amide conformation.

Bond 2: BBn - BBn+1

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

FITNESS SCORE tal: 37.965 -- Constraints/Bonds: 19.207 -- Angles: 18.758 -- Dihedrals: (

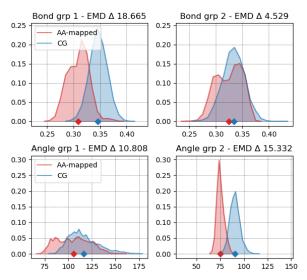



Figure S83. Nt in the cis amide conformation.

FITNESS SCORE tal: 40.054 -- Constraints/Bonds: 5.146 -- Angles: 34.908 -- Dihedrals: 0

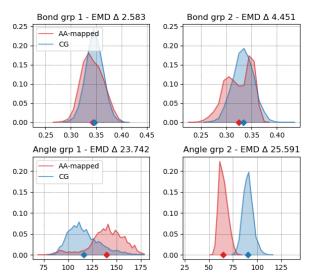



Figure S84. Nt in the trans amide conformation.

Bond 2: BBn - BBn+1

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

FITNESS SCORE tal: 41.222 -- Constraints/Bonds: 16.317 -- Angles: 24.905 -- Dihedrals: (

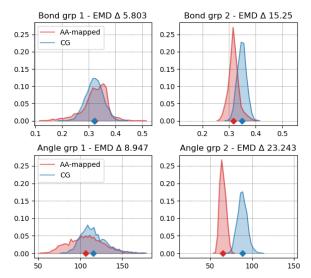



Figure S85. Nv in the cis amide conformation.

FITNESS SCORE [otal: 44.652 -- Constraints/Bonds: 6.652 -- Angles: 38.0 -- Dihedrals: 0.0

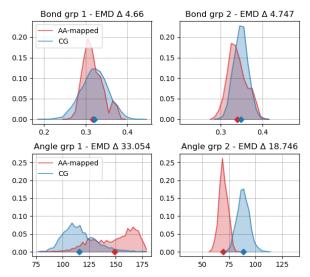



Figure S86. Nv in the trans amide conformation.

Bond 2: BBn - BBn+1

Angle 1:  $SC1 - BB_n - BB_{n+1}$ 

# FITNESS SCORE Total: 54.768 -- Constraints/Bonds: 21.044 -- Angles: 19.553 -- Dihedrals: 14.171

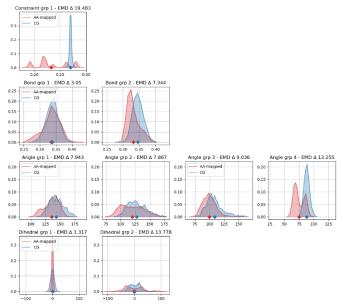



Figure S87. Nw in the cis amide conformation.



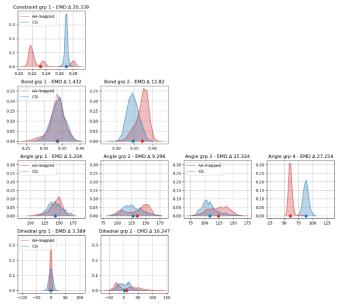



Figure S88. Nw in the trans amide conformation.

Constraint 1: SC1 - SC2 / SC2 - SC3 / etc. Angle 4:  $SC1 - BB_{n+1} - BB_n$ 

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1 Improper dihedral 1: SC1 - SC3 - SC4 - SC2

Bond 2: BBn - BBn+1

Angle 1:  $\{BB_n, BB_{n+1}\} - SC1 - SC2$ 

Angle 2:  $\{BB_n, BB_{n+1}\} - SC1 - SC3$ 

Angle 3:  $SC1 - BB_n - BB_{n+1}$ 

#### FITNESS SCORE Total: 177.518 -- Constraints/Bonds: 53.595 -- Angles: 29.418 -- Dihedrals: 94.505

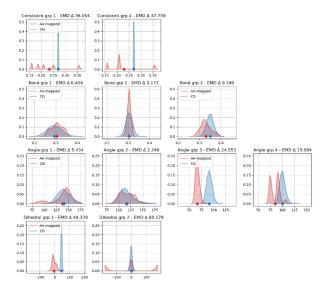
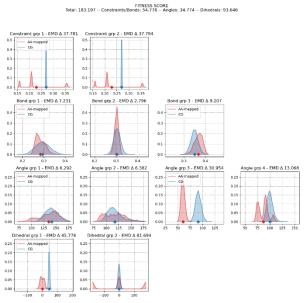




Figure S89. Nwe in the cis amide conformation.



 $\textbf{Figure S90.} \ \ \text{Nwe in the trans amide conformation}.$ 

Constraint 1: SC1 - SC2 / SC2 - SC3 / etc. Angle 3:  $SC1 - BB_{n+1} - BB_n$ 

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1 Angle 4: SC1 –  $\{SC2-SC3, SC2-SC4\}$ 

Bond 2: SC1 – SC2 Improper dihedral 1: SC1 – SC3 – SC4 – SC2

Bond 3:  $BB_n - BB_{n+1}$  Improper dihedral 1: SC5 - SC2 - SC3 - SC4

Angle 1: {BB<sub>n</sub>, BB<sub>n+1</sub>} – SC1 – SC2

 $Angle\ 2:\ SC1-BB_n-BB_{n+1}$ 

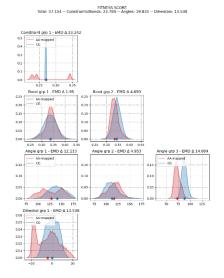



Figure **S91.** Ny in the cis amide conformation.

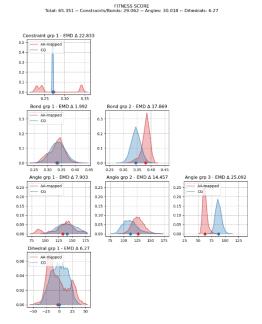



Figure \$92. Ny in the trans amide conformation.

Constraint 1: SC1-SC2/SC2-SC3/SC3-SC1

Bond 1:  $\{BB_n, BB_{n+1}\}$  – SC1

Bond 2:  $BB_n - BB_{n+1}$ 

Angle 1:  $\{BB_n, BB_{n+1}\}$  – SC1 – SC2

Angle 2:  $SC1 - BB_n - BB_{n+1}$ 

Angle 3:  $SC1 - BB_{n+1} - BB_n$ 

Improper Dihedral 1: {BBn, BB n+1}- SC2 - SC3 - SC1

# 7. Computational LogD Estimation

#### 7.1. Single Amino Acids

We compared the LogD values evaluated for the Martini 2.1 amino acids to the measurements made by Fauchere and Pilska for the N-acetyl amino acid amides. <sup>14</sup> Partitioning between *n*-octanol and water was done at pH 7.0 to 7.2 (maintained by addition of either NaOH or HCl) and concentrations in the respective phases were evaluated using spectroscopic methods. To reflect the fact that termini were capped and that no charge was present, we set the amino acid backbone to a P5 bead in all cases. Generally, there is good agreement between the values obtained as an average of triplicate measurements with those obtained experimentally and that standard deviations within computational measurements were in all cases less than 0.2 logD units (Table S27). For Phe, Pro, Trp and Tyr were generally too hydrophobic with the biggest deviation from experimentally obtained values, this shortfall being among the motivation for the development of the Martini 2.2. amino acid model and beyond in which Phe, Pro and Trp are reparametrized. Evaluations done according to Eq.8.1.

$$\Delta G = 2.303RTlogP \tag{7.1}$$

Where,  $\Delta G = \Delta H_{oco} - \Delta H_{H2O}$ , R = 0.008314 kJ/mol/K and T = 298.15 K.  $\Delta H_{H2O}$  and  $\Delta H_{oco}$  were taken as the maximum energy in both 0 – 0.5 nm and 3.5 – 4.0 nm in the resultant PMF. All results are in Tables S28 – S47.

Table S27 – Combined calculated amino acid LogPs compared to experimental values.

| Amino Acid | $\overline{x}$ LogP | $\sigma$ LogP | Fauchere and Pilska LogP |
|------------|---------------------|---------------|--------------------------|
| Ala        | -1.673              | 0.076         | -1.52                    |
| Cys        | -0.484              | 0.137         | -0.29                    |
| Gly        | -1.564              | 0.121         | -1.83                    |
| Hse        | -2.002              | 0.233         | -1.7                     |
| lle        | 1.069               | 0.033         | -0.03                    |
| Leu        | 0.936               | 0.070         | -0.13                    |
| Met        | -0.346              | 0.157         | -0.6                     |
| Asn        | -3.138              | 0.172         | -2.41                    |
| Pro        | 2.922               | 0.164         | -1.34                    |
| Gln        | -2.883              | 0.200         | -2.05                    |
| Ser        | -2.228              | 0.074         | -1.87                    |
| Thr        | -2.191              | 0.030         | -1.57                    |
| Val        | 0.529               | 0.124         | -0.61                    |
| Asp        | -3.026              | 0.059         | -2.6                     |
| Glu        | -3.133              | 0.170         | -2.47                    |
| Lys        | -1.989              | 0.167         | -2.84                    |
| Arg        | -2.627              | 0.086         | -2.84                    |
| Phe        | 2.946               | 0.193         | -0.04                    |
| Trp        | 2.159               | 0.047         | 0.42                     |
| Tyr        | 0.713               | 0.164         | -0.87                    |

Table S28 – Alanine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | -1.275                   | 8.810                      | 10.085         | -1.767 |
| 2          | -0.637                   | 8.386                      | 9.023          | -1.580 |
| 3          | -0.766                   | 8.775                      | 9.541          | -1.671 |
|            |                          |                            | $\overline{x}$ | -1.673 |
|            |                          |                            | σ              | 0.076  |
|            |                          |                            | Experiment     | -1.52  |

Table S29 – Cysteine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | 1.925                    | 5.533                      | 3.608          | -0.632 |
| 2          | 3.940                    | 5.657                      | 1.718          | -0.301 |
| 3          | 3.836                    | 6.805                      | 2.969          | -0.520 |
|            |                          |                            | $\overline{x}$ | -0.484 |
|            |                          |                            | σ              | 0.137  |
|            |                          |                            | Experiment     | -0.29  |

Table S30 – Glycine

| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|-------------------------|----------------|--------|
| 1          | -1.138                   | 7.818                   | 8.957          | -1.569 |
| 2          | -0.237                   | 7.828                   | 8.065          | -1.413 |
| 3          | -0.720                   | 9.037                   | 9.757          | -1.709 |
|            |                          |                         | $\overline{x}$ | -1.564 |
|            |                          |                         | σ              | 0.121  |
|            |                          |                         | Experiment     | -1.83  |

Table S31 – Histidine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | 2.346                    | 12.047                     | 9.701          | -1.699 |
| 2          | 0.187                    | 13.123                     | 12.936         | -2.266 |
| 3          | 1.585                    | 13.231                     | 11.645         | -2.040 |
|            |                          |                            | $\overline{x}$ | -2.002 |
|            |                          |                            | σ              | 0.233  |
|            |                          |                            | Experiment     | -1.7   |

Table S32 – Isoleucine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 8.127                    | 1.801                      | -6.325         | 1.108 |
| 2          | 7.819                    | 1.701                      | -6.118         | 1.072 |
| 3          | 7.626                    | 1.761                      | -5.865         | 1.027 |
|            |                          |                            | $\overline{x}$ | 1.069 |
|            |                          |                            | σ              | 0.033 |
|            |                          |                            | Experiment     | -0.03 |

Table S33 – Leucine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 7.422                    | 2.573                      | -4.849         | 0.849 |
| 2          | 8.262                    | 2.907                      | -5.356         | 0.938 |
| 3          | 8.356                    | 2.530                      | -5.826         | 1.021 |
|            |                          |                            | $\overline{x}$ | 0.936 |
|            |                          |                            | σ              | 0.070 |
|            |                          |                            | Experiment     | -0.13 |

Table S34 – Methionine

| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|-------------------------|----------------|--------|
| 1          | 3.096                    | 5.722                   | 2.625          | -0.460 |
| 2          | 4.783                    | 5.489                   | 0.706          | -0.124 |
| 3          | 4.155                    | 6.739                   | 2.585          | -0.453 |
|            |                          |                         | $\overline{x}$ | -0.346 |
|            |                          |                         | σ              | 0.157  |
|            |                          |                         | Experiment     | -0.6   |

Table S35 – Asparagine

| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|-------------------------|----------------|--------|
| 1          | -3.629                   | 13.829                  | 17.458         | -3.058 |
| 2          | -2.476                   | 14.531                  | 17.007         | -2.979 |
| 3          | -2.731                   | 16.545                  | 19.276         | -3.376 |
|            |                          |                         | $\overline{x}$ | -3.138 |
|            |                          |                         | σ              | 0.172  |
|            |                          |                         | Experiment     | -2.41  |

Table S36 – Proline

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 13.483                   | -2.777                     | -16.260        | 2.848 |
| 2          | 13.659                   | -4.318                     | -17.977        | 3.149 |
| 3          | 12.616                   | -3.187                     | -15.803        | 2.768 |
|            |                          |                            | $\overline{x}$ | 2.922 |
|            |                          |                            | σ              | 0.164 |
|            |                          |                            | Experiment     | -1.34 |

Table S37 – Glutamine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | -1.227                   | 14.107                     | 15.334         | -2.686 |
| 2          | -2.105                   | 15.919                     | 18.024         | -3.157 |
| 3          | -2.366                   | 13.647                     | 16.013         | -2.805 |
|            |                          |                            | $\overline{x}$ | -2.883 |
|            |                          |                            | σ              | 0.200  |
|            |                          |                            | Experiment     | -2.05  |

Table S38 – Serine

| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|-------------------------|----------------|--------|
| 1          | -0.688                   | 12.237                  | 12.926         | -2.264 |
| 2          | -0.829                   | 12.281                  | 13.110         | -2.296 |
| 3          | -0.974                   | 11.160                  | 12.134         | -2.125 |
|            |                          |                         | $\overline{x}$ | -2.883 |
|            |                          |                         | σ              | 0.200  |
|            |                          |                         | Experiment     | -1.87  |

Table S39 – Threonine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | -1.096                   | 11.655                     | 12.751         | -2.233 |
| 2          | -1.099                   | 11.292                     | 12.391         | -2.170 |
| 3          | -1.028                   | 11.356                     | 12.385         | -2.169 |
|            |                          |                            | $\overline{x}$ | -2.191 |
|            |                          |                            | σ              | 0.030  |
|            |                          |                            | Experiment     | -1.57  |

Table S40 – Valine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 4.478                    | 2.356                      | -2.122         | 0.372 |
| 2          | 6.676                    | 2.830                      | -3.846         | 0.674 |
| 3          | 6.335                    | 3.243                      | -3.092         | 0.542 |
|            |                          |                            | $\overline{x}$ | 0.529 |
|            |                          |                            | σ              | 0.124 |
|            |                          |                            | Experiment     | -0.61 |

Table S41 – Aspartic Acid

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | -1.274                   | 16.342                     | 17.616         | -3.086 |
| 2          | -2.617                   | 14.774                     | 17.391         | -3.046 |
| 3          | -1.456                   | 15.356                     | 16.812         | -2.945 |
|            |                          |                            | $\overline{x}$ | -3.026 |
|            |                          |                            | σ              | 0.059  |
|            |                          |                            | Experiment     | -2.6   |

Table S42 – Glutamic Acid

| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|-------------------------|----------------|--------|
| 1          | -2.841                   | 14.702                  | 17.543         | -3.073 |
| 2          | -2.596                   | 16.612                  | 19.208         | -3.365 |
| 3          | -1.078                   | 15.824                  | 16.902         | -2.961 |
|            |                          |                         | $\overline{x}$ | -3.133 |
|            |                          |                         | σ              | 0.170  |
|            |                          |                         | Experiment     | -2.47  |

Table S43 – Lysine

| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|-------------------------|----------------|--------|
| 1          | 0.429                    | 13.132                  | 12.703         | -2.225 |
| 2          | 0.322                    | 10.933                  | 10.612         | -1.859 |
| 3          | 0.413                    | 11.158                  | 10.745         | -1.882 |
|            |                          |                         | $\overline{x}$ | -1.989 |
|            |                          |                         | σ              | 0.167  |
|            |                          |                         | Experiment     | -2.84  |

Table S44 – Arginine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | -1.292                   | 14.398                     | 15.690         | -2.748 |
| 2          | 0.238                    | 14.830                     | 14.591         | -2.556 |
| 3          | -0.394                   | 14.324                     | 14.718         | -2.578 |
|            |                          |                            | $\overline{x}$ | -2.627 |
|            |                          |                            | σ              | 0.086  |
|            |                          |                            | Experiment     | -2.84  |

Table S45 – Phenylalanine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 15.728                   | -0.037                     | -15.765        | 2.761 |
| 2          | 16.917                   | -1.424                     | -18.341        | 3.213 |
| 3          | 16.593                   | 0.236                      | -16.357        | 2.865 |
|            |                          |                            | $\overline{x}$ | 2.946 |
|            |                          |                            | σ              | 0.193 |
|            |                          |                            | Experiment     | -0.04 |

Table S46 – Tryptophan

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 13.473                   | 1.226                      | -12.247        | 2.145 |
| 2          | 13.803                   | 1.759                      | -12.044        | 2.110 |
| 3          | 14.007                   | 1.318                      | -12.690        | 2.223 |
|            |                          |                            | $\overline{x}$ | 2.159 |
|            |                          |                            | σ              | 0.047 |
|            |                          |                            | Experiment     | 0.42  |

Table S47 – Tyrosine

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 9.149                    | 4.651                      | -4.499         | 0.788 |
| 2          | 9.167                    | 4.224                      | -4.943         | 0.866 |
| 3          | 7.249                    | 4.475                      | -2.774         | 0.486 |
|            | •                        |                            | $\overline{x}$ | 0.713 |
|            |                          |                            | σ              | 0.164 |
|            |                          |                            | Experiment     | -0.87 |

# 7.2. Single Peptoid Residues

Table S48 – Nf

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 21.15964                 | -6.62587                   | -27.78551      | 4.867 |
| 2          | 20.98874                 | -5.874386                  | -26.863126     | 4.705 |
| 3          | 20.85884                 | -5.646056                  | -26.504896     | 4.643 |
|            |                          |                            | $\overline{x}$ | 4.738 |
|            |                          |                            | σ              | 0.094 |

Table S49 – Nfe

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 22.68022                 | -7.00584                   | -29.6861       | 5.200 |
| 2          | 19.48207                 | -7.48153                   | -26.9636       | 4.723 |
| 3          | 20.78674                 | -6.93362                   | -27.7204       | 4.856 |
|            |                          |                            | $\overline{x}$ | 4.926 |
|            |                          |                            | σ              | 0.201 |

Table S50 – Nfex

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 23.17480                 | -6.916362                  | -30.091162     | 5.271 |
| 2          | 23.64633                 | -6.330258                  | -29.976588     | 5.251 |
| 3          | 21.28281                 | -7.552055                  | -28.834865     | 5.051 |
|            |                          |                            | $\bar{x}$      | 5.191 |
|            |                          |                            | σ              | 0.010 |

Table S51 – Nfn

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 15.81482                 | -5.678048                  | -21.492868     | 3.765 |
| 2          | 16.51626                 | -4.974607                  | -21.490867     | 3.764 |
| 3          | 15.67659                 | -4.508709                  | -20.185299     | 3.536 |
|            |                          |                            | $\overline{x}$ | 3.688 |
|            |                          |                            | σ              | 0.108 |

Table S52 – Nf[naph]

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 28.64359                 | -8.260299                  | -36.903889     | 6.464 |
| 2          | 31.94029                 | -9.118527                  | -41.058817     | 7.192 |
| 3          | 31.64883                 | -10.35277                  | -42.0016       | 7.357 |
|            |                          |                            | $\overline{x}$ | 7.004 |
|            |                          |                            | σ              | 0.388 |

Table S53 – Nfe[4Cl]

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 23.51337                 | -7.75421                   | -31.2676       | 5.477 |
| 2          | 24.11048                 | -8.3002                    | -32.4107       | 5.677 |
| 3          | 23.40154                 | -7.69121                   | -31.0927       | 5.446 |
|            |                          |                            | $\overline{x}$ | 5.533 |
|            |                          |                            | σ              | 0.102 |

Table S54 – Nfe[4Br]

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 23.94346                 | -8.15858                   | -32.102        | 5.623 |
| 2          | 24.56152                 | -8.1246                    | -32.6861       | 5.725 |
| 3          | 24.03651                 | -8.32673                   | -32.3632       | 5.669 |
|            |                          |                            | $\overline{x}$ | 5.672 |
|            |                          |                            | σ              | 0.042 |

Table S55 – Nk

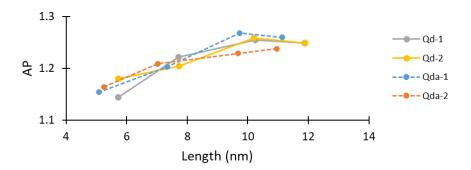
| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 8.017939                 | 1.324048                   | -6.69389       | 1.173 |
| 2          | 7.655092                 | 0.752617                   | -6.90248       | 1.209 |
| 3          | 7.788909                 | 1.808323                   | -5.98059       | 1.048 |
|            |                          |                            | $\overline{x}$ | 1.143 |
|            |                          |                            | σ              | 0.069 |

Table S56 – Nke

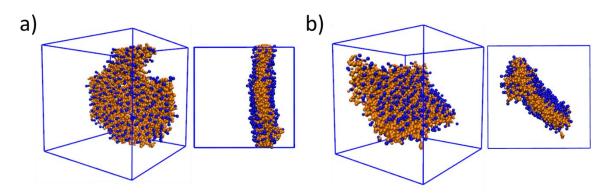
| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD   |
|------------|--------------------------|----------------------------|----------------|--------|
| 1          | 3.665132                 | 3.769994                   | 0.104862       | -0.018 |
| 2          | 4.3885                   | 3.800343                   | -0.58816       | 0.103  |
| 3          | 4.033832                 | 3.497304                   | -0.53653       | 0.094  |
|            |                          |                            | $\overline{x}$ | 0.060  |
|            |                          |                            | σ              | 0.055  |

Table S57 – Nab

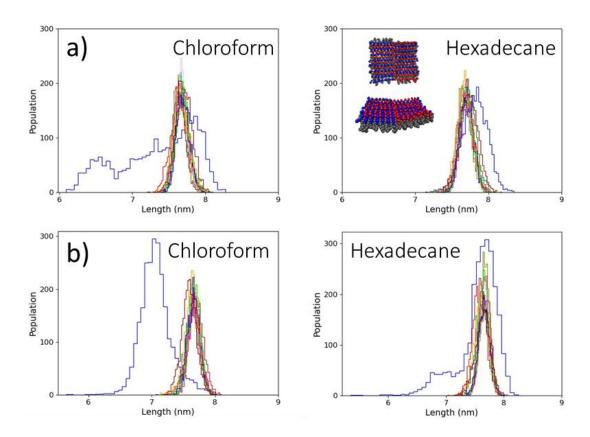
| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|-------------------------|----------------|-------|
| 1          | 16.01986                 | -3.64546                | -19.6653       | 3.445 |
| 2          | 16.84876                 | -3.94692                | -20.7957       | 3.643 |
| 3          | 14.38903                 | -4.14805                | -18.5371       | 3.247 |
|            |                          |                         | $\overline{x}$ | 3.445 |
|            |                          |                         | σ              | 0.162 |


Table S58 – Nw

| Simulation | Water energy<br>[kj/mol] | Octanol energy<br>[kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|----------------------------|----------------|-------|
| 1          | 19.30856                 | -4.080147                  | -23.388707     | 4.097 |
| 2          | 20.99385                 | -3.304055                  | -24.297905     | 4.256 |
| 3          | 19.7299                  | -3.930853                  | -23.660753     | 4.144 |
|            |                          |                            | $\overline{x}$ | 4.166 |
|            |                          |                            | σ              | 0.067 |


Table S58 – Nwe

| Simulation | Water energy<br>[kj/mol] | Octanol energy [kj/mol] | ΔG<br>[kj/mol] | LogD  |
|------------|--------------------------|-------------------------|----------------|-------|
| 1          | 20.51027                 | -4.306285               | -24.816555     | 4.347 |
| 2          | 22.97705                 | -4.216702               | -27.193752     | 4.763 |
| 3          | 22.46331                 | -5.638476               | -28.101786     | 4.922 |
|            |                          |                         | $\overline{x}$ | 4.677 |
|            |                          |                         | σ              | 0.242 |


# 8. Assembly Studies



**Figure S93.** Equilibrium fibre length and associated AP score with either a Qd or Qda bead at the N-terminus. The resultant behaviour is the same irrespective of this choice, indicating that packing of minimal peptoids can be reproduced with either choice. In this work we elected to use an Qd bead as this is also used for peptide N-termini in Martini 2.1.



**Figure S94.** Resultant assembly structures formed from duplicate simulations of 300 Nf-Nke-Nf a 12.5 x 12.5 x 12.5 nm box for 250 ns of simulation time a) and b). in both cases flat bilayer like structures from with a well-defined aromatic core which agrees with other analyses of this system.  $^{15}$ 



**Figure S95.** Histograms of end-to-end chain lengths measured for  $(Nke-Nfe)_7$ - $(Ne-Nfe)_7$  28mer at air-chloroform and air-hexadecane interface, over 100 ns (2500 frames) duplicate experiments a) and b). In both cases the majority of the 14 chains are centred around 77 Å in length. Note the chain which is distinct from this (in blue) is at the edge and is not fully integrated into the sheet structure leading to distinct variations in length.

## 9. Dihedral Optimization

Prior to the use of Ns, Nt and NmO it was necessary to parameterise several dihedral torsions at the atomistic level. Here scans at the MP2/6-31G(d) level of theory were performed and dihedral angle potentials at the MD level were then selected to adequately reproduce the potential energy surface (PES) of the torsion. Partial charge fitting was done following the method we adopted for peptoid monomers previously and the energies of water interactions are detailed in Tables S60 – S62. Additionally dihedral angle scans are shown in Figures S96 – S105.

In some cases, substantial differences exist between the QM and MD levels exist, this is due to structural changes through hydrogen bond formation, as well as unfavourable 'eclipsed protons' along a methylene chain which are beyond 1 – 4 exclusions (NmO, see Figure S96) however the global minima are reproduced and so this fit is reasonable.

Table S60 – NmO interaction energies (kcal mol<sup>-1</sup>).

QM dipole magnitude: 1.703

MD dipole magnitude: 1.878 (deviation angle: 52.4°)

| Complex       | ΔE (HF) | ΔE (CGenFF) | ΔΔΕ   |
|---------------|---------|-------------|-------|
| Interaction-1 | -8.41   | -8.38       | -0.02 |
|               |         | MAE         | 0.02  |

**Table S61** – Ns interaction energies (kcal mol<sup>-1</sup>).

QM dipole magnitude: 2.118

MD dipole magnitude: 2.367 (deviation angle: 67.2°)

| Complex       | ΔE (HF) | ΔE (CGenFF) | ΔΔΕ   |
|---------------|---------|-------------|-------|
| Interaction-1 | -6.71   | -6.52       | -0.19 |
| Interaction-2 | -15.21  | -15.33      | 0.12  |
|               |         | MAE         | 0.16  |

Table S62 – Nt interaction energies (kcal mol<sup>-1</sup>).

QM dipole magnitude: 3.493

MD dipole magnitude: 5.419 (deviation angle: 3.9°)

| Complex       | ΔE (HF) | ΔE (CGenFF) | ΔΔΕ   |
|---------------|---------|-------------|-------|
| Interaction-1 | -6.35   | -6.61       | 0.26  |
| Interaction-2 | -8.69   | -8.37       | -0.32 |
| Interaction-3 | -7.92   | -7.99       | 0.06  |
|               |         | MAE         | 0.21  |

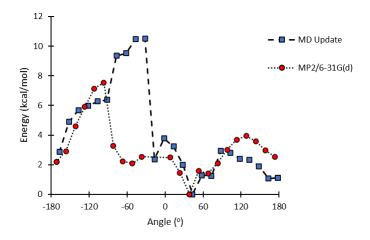



Figure S96. Torsion NTOID-CG321-CG321-CG301 along NmO sidechain branch.

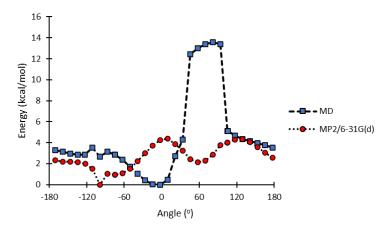



Figure \$97. Torsion NTOID-CG321-OG311-HGP1 on Ns sidechain.

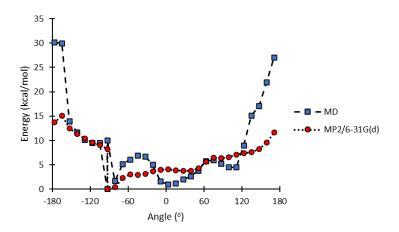



Figure S98. Torsion CG321-NTOID-CG321-OG311 on Ns sidechain.

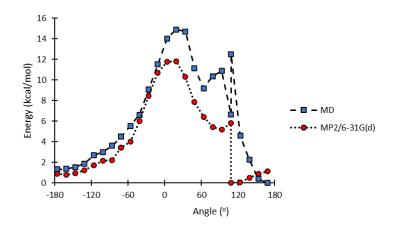



Figure S99. Torsion CG2O1-NTOID-CG321-OG311 on Ns sidechain.

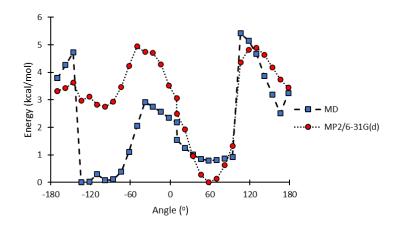



Figure \$100. Torsion HGP1-OG311-CG311-NTOID on Nt sidechain.

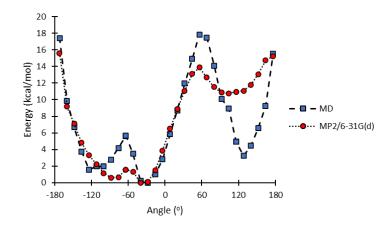



Figure S101. Torsion CG331-CG311-NTOID-CG321 on Nt sidechain.

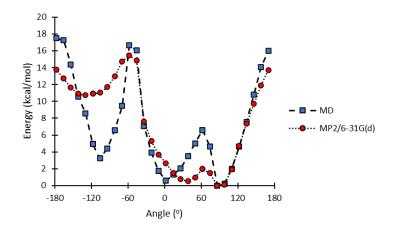



Figure S102. Torsion CG331-CG311-NTOID-OG311 on Nt sidechain.

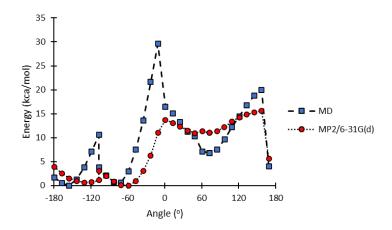



Figure \$103. Torsion OG311-CG311-NTOID-CG2O1 on Nt sidechain.

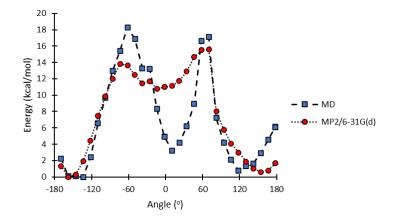



Figure S104. Torsion HGA1-CG311-NTOID-CG321 on Nt sidechain.

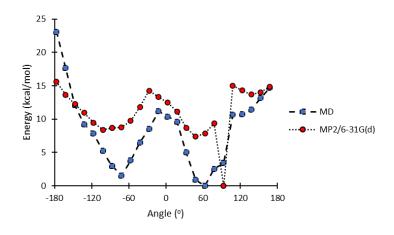



Figure \$105. Torsion CG2O1-CG321-NTOID-CG311 on Nt sidechain.

### 10. References

- 1. R. N. Zuckermann, J. M. Kerr, S. B. H. Kent and W. H. Moos, *J. Am. Chem. Soc.*, 1992, **114**, 10646-10647.
- 2. A. Salaün, A. Favre, B. Le Grel, M. Potel and P. Le Grel, *J. Org. Chem.*, 2006, **71**, 150-158.
- 3. Y. Lee and J. Seo, *Tetrahedron Lett.*, 2018, **59**, 3946-3949.
- 4. H. L. Bolt, C. E. J. Williams, R. V. Brooks, R. N. Zuckermann, S. L. Cobb and E. H. C. Bromley, *Biopolymers*, 2017, **108**.
- 5. P. Pracht, F. Bohle and S. Grimme, *Phys. Chem. Chem. Phys.*, 2020, **22**, 7169-7192.
- 6. J. V. Vermaas, D. J. Hardy, J. E. Stone, E. Tajkhorshid and A. Kohlmeyer, *J Chem Inf Model*, 2016, **56**, 1112-1116.
- 7. Force fields in GROMACS, <a href="https://manual.gromacs.org/current/user-guide/force-fields.html">https://manual.gromacs.org/current/user-guide/force-fields.html</a>, Accessed 2023.
- 8. B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, *J. Comput. Chem.*, 1997, **18**, 1463-1472.
- 9. M. F. Zhao, K. J. Lachowski, S. Zhang, S. Alamdari, J. Sampath, P. Mu, C. J. Mundy, J. Pfaendtner, J. J. De Yoreo, C. L. Chen, L. D. Pozzo and A. L. Ferguson, *Biomacromolecules*, 2022, **23**, 992–1008.
- 10. Martini tutorials: Free energy techniques <a href="http://cgmartini.nl/index.php/tutorials-general-introduction-gmx5/partitioning-techniques">http://cgmartini.nl/index.php/tutorials-general-introduction-gmx5/partitioning-techniques</a>, Accessed 2023.
- 11. T. M. M. J. Abraham, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, *SoftwareX*, 2015, **1**, 19 · 25.
- 12. W. Humphrey, Dalke, A. and Schulten, K., J. Molec. Graphics 1996, 14.1, 33 38.
- 13. J. C. Phillips, R. Braun, W. Wang, J. C. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale and S. K., *J. Comp. Chem.*, 2005, **26**, 1781-1802.
- 14. J. L. Fauchere and V. Pliska, European Journal of Medicinal Chemistry, 1983, 18, 369-375.
- 15. K. H. A. L. Hamish W. A. Swanson, and Tell Tuttle, J. Phys. Chem. B, 2023.