## **Supplementary Material**

## Electronic and elastic properties of metastable Zr<sub>3</sub>N<sub>4</sub>: a joint experimental and theoretical study

Yuhe Liu<sup>1,2,#</sup>, Kunlun Wang<sup>1,2,#</sup>, Nina Ge<sup>3</sup>, Hui Sun<sup>1,2</sup>, Bo Dai<sup>3</sup>, Yong Wang<sup>1,2,\*</sup>

<sup>1</sup>School of Space Science and Physics, Shandong University, Weihai 264209, China.

<sup>2</sup> Weihai Research Institute of Industrial Technology, Shandong University, Weihai

264209, China.

<sup>3</sup> State Key Laboratory for Environmental-friendly Energy Materials, Southwest

University of Science and Technology, Mianyang 621010, China.

# These authors contribution equally.

\*Corresponding author: Yong Wang: wang.yong06@sdu.edu.cn

**Table S1** shows the comparison between theoretical *d*-space values (nm) of  $o-Zr_3N_4$ and the values of our thin film measured by electron diffraction. The well consistency between theoretical and experimental values indicates the thin film is  $o-Zr_3N_4$ . **Table S1.** The comparison between theoretical *d*-space values (nm) of  $o-Zr_3N_4$  and the values of our thin film measured by electron diffraction.

| (hkl) | Theoretical d values | Measured <i>d</i> values (ED) |
|-------|----------------------|-------------------------------|
| 310   | 0.310                | 0.309                         |
| 201   | 0.272                | 0.271                         |
| 410   | 0.237                | 0.238                         |
| 421   | 0.184                | 0.187                         |
| 511   | 0.165                | 0.166                         |

**Table S2** shows the experimental hardness values and Young's modulus of ZrN and o-Zr<sub>3</sub>N<sub>4</sub> thin films. The hardness values of ZrN and o-Zr<sub>3</sub>N<sub>4</sub> thin films are approximately 19.26 GPa and 7.90 GPa, which are close to the calculated hardness values of ZrN (18.06 GPa) and o-Zr<sub>3</sub>N<sub>4</sub> (6.98 GPa). At the same time, the experimental Young's moduli (314.53 GPa for ZrN and 171.54 GPa for o-Zr<sub>3</sub>N<sub>4</sub>) also agree with the calculated results (385.86 GPa for ZrN and 212.56 GPa for o-Zr<sub>3</sub>N<sub>4</sub>). The consistency between experimental values and calculated results indicates the accuracy of the calculations. **TABLE S2.** The experimental hardness values and Young's modulus of ZrN and o-Zr<sub>3</sub>N<sub>4</sub> thin films.

|         | ZrN     |         | o-Zr <sub>3</sub> N <sub>4</sub> |         |
|---------|---------|---------|----------------------------------|---------|
|         | H (GPa) | E (GPa) | H (GPa)                          | E (GPa) |
| 1       | 19.67   | 314.76  | 6.88                             | 156.06  |
| 2       | 21.29   | 316.19  | 7.60                             | 182.18  |
| 3       | 20.22   | 342.17  | 8.15                             | 168.15  |
| 4       | 16.40   | 255.41  | 8.21                             | 174.53  |
| 5       | 18.73   | 344.12  | 8.67                             | 176.78  |
| Average | 19.26   | 314.53  | 7.90                             | 171.54  |

**FIG. S1** shows the orbital-projection electronic band dispersion of ZrN calculated by VASP and DS-PAW. Both orbital-projection electronic band dispersion show consistent features that some bands cross the Fermi level and these bands are dominated by the Zr-4*d* character, indicating that the electrons in ZrN are mainly derived from Zr-4*d* electrons.



**FIG. S1.** The orbital-projection electronic band dispersion of ZrN calculated by (a) VASP and (b) DS-PAW.