Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary Information

Anodic voltage performance of conducting polymer-functionalized boron nitride nanosheets: A DFT assessment

Chidera C. Nnadiekwe^a, Hasnain Sajid^b, Ismail Abdulazeez^c, Abdulaziz Al-Saadi^{a,d,*}

^aChemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia ^bSchool of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK ^cInterdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia ^dInterdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of

Petroleum & Minerals, Dhahran 31261, Saudi Arabia

* Corresponding author: Dr. Abdulaziz Al-Saadi (asaadi@kfupm.edu.sa)

Figure S1. Optimized cross-sectional structures of (a) Li@BNNS (b) Li⁺@BNNS, (c) Na@BNNS, and (d) Na⁺@BNNS. The pristine boron nitride nanosheet (BNNS) comprises 63 atoms of boron and nitrogen each with tangling atoms at the structural boundaries saturated with hydrogen atoms to minimize the boundary effects [37].

BNNS	Li@BNNS	Li ⁺ @BNNS	Na@BNNS	Na ⁺ @BNNS					
B-N Bond Distance (Å)									
1.45	1.45	1.46	1.45	1.46					
M/M ⁿ⁺ -N Bond Distance (Å)									
0.00	3.31	2.23	3.66	2.73					
M/M ⁿ⁺ -B Bond Distance (Å)									
0.00	3.33	2.33	3.91	2.80					

Table S1. Adsorption distances of metals and metal-ions on BNNS complexes.

B-N Bond Distance (Å)											
PA-BNNS	PA- BNNS	Li@PA- BNNS	Li+@PA- BNNS	Na@PA- BNNS	Na ⁺ @PA- BNNS	PP-BNNS	PP- BNNS	Li@PP- BNNS	Li ⁺ @PP- BNNS	Na@PP- BNNS	Na⁺@PP- BNNS
	1.55	1.48	1.48	1.48	1.48		1.56	1.45 (float)	1.48	1.45 (float)	1.48
PPh- NNS	PPPh- BNNS	Li@PPPh- BNNS	Li ⁺ @PPPh- BNNS	Na@PPPh- BNNS	Na ⁺ @PPPh- BNNS	-BNNS	PT- BNNS	Li@PT- BNNS	Li+@PT- BNNS	Na@PT- BNNS	Na ⁺ @PT- BNNS
	1.56	1.46(float)	1.48	1.45(float)	1.48	L T T	1.56	1.46(float)	1.49	1.45(float)	1.48
M/M ⁿ⁺ -N Bond Distance (Å)											
PA- BNNS	PA- BNNS	Li@PA- BNNS	Li ⁺ @PA- BNNS	Na@PA- BNNS	Na ⁺ @PA- BNNS	PP- BNNS	PP- BNNS	Li@PP- BNNS	Li ⁺ @PP- BNNS	Na@PP- BNNS	Na ⁺ @PP- BNNS
	-	2.97	2.36	2.85	2.71		-	2.83	2.60	2.63	2.77
PPPh- BNNS	PPPh- BNNS	Li@PPPh- BNNS	Li+@PPPh- BNNS	Na@PPPh- BNNS	Na ⁺ @PPPh- BNNS	PT-BNNS	PT- BNNS	Li@PT- BNNS	Li+@PT- BNNS	Na@PT- BNNS	Na ⁺ @PT- BNNS
	-	2.32	2.28	2.74	2.92		-	3.15	2.22	2.75	2.79
	M/M ⁿ⁺ -B Bond Distance (Å)										
SNN	PA- BNNS	Li@PA- BNNS	Li ⁺ @PA- BNNS	Na@PA- BNNS	Na ⁺ @PA- BNNS	SNN	PP- BNNS	Li@PP- BNNS	Li ⁺ @PP- BNNS	Na@PP- BNNS	Na ⁺ @PP- BNNS
PA-BI	-	2.58	2.46	2.91	2.83	PP-BI	-	2.68	2.45	3.04	2.90
PPPh- BNNS	PPPh- BNNS	Li@PPPh- BNNS	Li ⁺ @PPPh- BNNS	Na@PPPh- BNNS	Na ⁺ @PPPh- BNNS	PT- NNS	PT- BNNS	Li@PT- BNNS	Li ⁺ @PT- BNNS	Na@PT- BNNS	Na ⁺ @PT- BNNS
	_	2.40	2.39	2.67	3.02		-	2.69	2.68	2.94	2.86

Table S2. Adsorption distances of conducting polymers, metals, and metal-ions on BNNS and CP-BNNS complexes.

Figure S2. The HOMO and LUMO iso-surfaces of the conducting polymers adsorbed onto the BNNS (M/Mn+@BNNS).

	НОМО	LUMO	Eg	Ed			
BNNS	-6.45	-0.64	5.81				
Li@BNNS	-3.07	-0.66	2.41	-11.85			
Li ⁺ @BNNS	-7.98	-4.07	3.91	-49.97			
Na@BNNS	-2.91	-0.66	2.25	-7.50			
Na ⁺ @BNNS	-7.96	-3.99	3.96	-32.35			
PA-BNNS	-7.86	-4.28	3.58	536.18			
Li@PA-BNNS	-7.42	-3.47	3.94	-33.30			
Li ⁺ @PA-BNNS	-9.75	-7.25	2.50	-6.97			
Na@PA-BNNS	-7.90	-3.83	4.07	-23.16			
Na ⁺ @PA-BNNS	-9.91	-6.92	2.99	7.84			
PP-BNNS	-6.66	-3.53	3.13	535.87			
Li@PP-BNNS	-7.35	-3.62	3.73	-92.94			
Li ⁺ @PP-BNNS	-8.99	-6.04	2.95	-8.46			
Na@PP-BNNS	-7.21	-3.49	3.72	-81.89			
Na ⁺ @PP-BNNS	-9.23	-5.17	4.06	-16.52			
PPPh-BNNS	-7.81	-3.60	4.21	533.27			
Li@PPPh-BNNS	-8.05	-4.28	3.78	-73.10			
Li ⁺ @PPPh-BNNS	-9.41	-6.18	3.23	-5.10			
Na@PPPh-BNNS	-8.18	-4.12	4.06	-64.48			
Na ⁺ @PPPh-BNNS	-9.36	-6.31	3.05	6.49			
PT-BNNS	-7.38	-4.05	3.33	539.47			
Li@PT-BNNS	-7.90	-4.89	3.01	-94.64			
Li ⁺ @PT-BNNS	-9.22	-7.03	2.19	-5.48			
Na@PT-BNNS	-7.77	-4.72	3.05	-82.41			
Na ⁺ @PT-BNNS	-10.07	-6.26	3.82	-9.62			

Table S3. HOMO, LUMO, band gap and adsorption energies (all in eV) of metal atoms and ions on BNNS and CP-BNNS complexes compared to bare and functionalized BNNS structures.

Figure S3. The density of States of the metal atoms and ions adsorbed onto the CP-BNNS.

Figure S4. The pathway of ion diffusion on the sheets

Figure S5. The diffusion profile of Li^+ and Na^+ ions via path 1, path 2 and path 3 on the pristine BNNS

sheet

Figure S6. The diffusion profile of Li⁺ and Na⁺ ions via path 1, path 2 and path 3 on the PT functionalized BNNS sheet

Figure S7 The geometrically optimized supercell with lattice dimensions of $12 \times 12 \times 20$ Å of (a) BNNS, and the conducting polymer functionalized BNNS (b) from left to right: PA-BNNS, PT-BNNS, PP-BNNS and PPPh-BNNS

System	Cluster model			Periodic system				
	НОМО	LUMO	E_{g}	НОМО	LUMO	E_{g}		
BNNS	-6.45	-0.64	5.81	-6.89	-1.02	5.87		
PA-BNNS	-7.86	-4.28	3.58	-5.55	-3.14	2.41		
Li@PA-BNNS	-7.42	-3.47	3.94	-5.75	-2.50	3.25		
Li ⁺ @PA-BNNS	-9.75	-7.25	2.50	-5.36	-3.19	2.18		
Na@PA-BNNS	-7.90	-3.83	4.07	-7.01	-3.28	3.73		
Na ⁺ @PA-BNNS	-9.91	-6.92	2.99	-5.65	-3.25	2.39		
PP-BNNS	-6.66	-3.53	3.13	-4.96	-2.69	2.27		
Li@PP-BNNS	-7.35	-3.62	3.73	-4.88	-2.55	2.34		
Li ⁺ @PP-BNNS	-8.99	-6.04	2.95	-5.03	-2.92	2.11		
Na@PP-BNNS	-7.21	-3.49	3.72	-4.87	-2.15	2.99		
Na ⁺ @PP-BNNS	-9.23	-5.17	4.06	-4.88	-1.11	3.77		
PPPh-BNNS	-7.81	-3.60	4.21	-5.80	-2.41	3.38		
Li@PPPh-BNNS	-8.05	-4.28	3.78	-5.64	-2.87	2.77		
Li ⁺ @PPPh-BNNS	-9.41	-6.18	3.23	-5.58	-2.89	2.69		
Na@PPPh-BNNS	-8.18	-4.12	4.06	-5.81	-2.96	2.85		
Na ⁺ @PPPh-BNNS	-9.36	-6.31	3.05	-5.78	-3.20	2.58		
PT-BNNS	-7.38	-4.05	3.33	-5.04	-2.56	2.48		
Li@PT-BNNS	-7.90	-4.89	3.01	-5.14	-3.50	1.63		
Li+@PT-BNNS	-9.22	-7.03	2.19	-4.92	-3.44	1.48		
Na@PT-BNNS	-7.77	-4.72	3.05	-5.05	-2.87	2.18		
Na ⁺ @PT-BNNS	-10.07	-6.26	3.82	-5.02	-1.76	3.27		

Table S4. The electronic properties of the pristine and the CP functionalized BNNS sheets