Supporting Information

Design of high performance nitrogen reduction electrocatalysts by doping defective

polyoxometalate with a single atom promoter

Linghui Lin^a, Ruijie Ma^a, Rong Jiang^{b,*} and Sen Lin^{a,*}

^a State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fuzhou 350002, China

^b Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350002, China

Figure R1. The corresponding structures of the bulk crystal unit cell are shown. Figures (a) to (z) represent Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt and Au, respectively.

Metal	$E_{(\text{bulk})}$	Ν	$E_{(M)}$
Sc	-13.22	2	-2.11
Ti	-16.47	2	-2.32
V	-15.49	2	-2.31
Cr	-19.87	2	-5.48
Mn	-37.09	4	-5.16
Fe	-17.25	2	-3.40
Co	-14.91	2	-1.21
Ni	-23.89	4	-0.73
Cu	-16.92	4	-0.24
Zn	-32.43	2	-0.16
Y	-13.46	2	-2.13
Zr	-17.82	2	-1.96
Nb	-21.58	2	-3.20
Mo	-22.98	2	-4.30
Ru	-19.53	2	-2.10
Rh	-31.35	4	-1.28
Pd	-23.02	4	-1.48
Ag	-13.25	4	-0.40
Hf	-20.71	2	-3.47
Та	-24.89	2	-3.49
W	-27.25	2	-4.54
Re	-26.00	2	-1.94
Os	-23.69	2	-2.91
Ir	-38.27	4	-1.24
Pt	-27.26	4	-0.53
Au	-15.66	4	-0.29

Table S1. The energies of the bulk crystal unit cell $(E_{(bulk)})$ and the free single metal atom $(E_{(M)})$, and the number of atoms in the bulk (N) are shown.

Species	ZPE	TS
Н	0.14	0.2
N_2	0.15	0.59
*N2	0.200	0.176
*N ₂ H	0.455	0.199
*N ₂ H ₂	0.812	0.204
*N	0.087	0.06
*NH	0.346	0.099
*NH ₂	0.660	0.140
*NH ₃	1.024	0.127
*HN ₂ H	0.796	0.147
*HN ₂ H ₂	1.120	0.168
$*H_2N_2H_2$	1.492	0.169

Table S2. The zero point energies and TS of different adsorbed species.

$\Delta E_{ads}(eV)$ promoter	end-on(Mo)	side-on(Mo)	bridge-on	end-on(M)	side-on(M)
None	-0.63	***	***	***	***
Sc	-0.70	-0.21	***	-0.51	* * *
Ti	-0.89	-0.47	***	-0.71	-0.28
V	-0.84	-0.29	***	-0.65	-0.28
Cr	-0.73	-0.15	***	-0.51	0.35
Mn	-0.72	-0.13	***	-0.35	***
Fe	-0.96	-0.20	***	-0.44	***
Zn	-0.78	-0.23	***	-0.50	***
Y	-0.70	-0.27	***	-0.41	***
Zr	-0.92	-0.54	***	-0.68	-0.26
Nb	-0.90	-0.47	-0.12	-0.68	-0.47
Мо	-0.89	-0.45	-0.18	-0.65	-0.79
Hf	-0.92	-0.54	***	-0.81	-0.36
Ta	-0.91	-0.47	0.01	-0.75	-0.58
W	-0.79	-0.35	***	-0.45	-0.61

Table S3. $*N_2$ adsorption energy of five possible configurations.

Promoter	Bond length (Å)	Promoter	Bond length (Å)
Free N ₂	1.117	Zn	1.122
None	1.115	Y	1.130
Sc	1.128	Zr	1.133
Ti	1.131	Nb	1.131
V	1.128	Мо	1.130
Cr	1.123	Hf	1.133
Mn	1.124	Та	1.130
Fe	1.125	W	1.129

Table S4. Bond length of * N_2 adsorbed via the end-on (Mo) configuration.