Dissecting the chiral recognition of TLR4/MD2 with Neoseptin-3 enantiomers by molecular dynamics simulations

Cong Zhang^{1,2}, Siru Wu^{1,2}, Mingqi Li^{1,2}, Penghui Li ³, Xiubo Du³, Yibo Wang^{1*}, Xiaohui Wang^{1,2,4*}

¹Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

²School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China

³Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China ⁴Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China

*Corresponding authors: Yibo Wang (yibo.wang@ciac.ac.cn); Xiaohui Wang (xiaohui.wang@ciac.ac.cn)

Supporting Information

Figure S1. Structural details of the (2*Neo-3/TLR4/MD2)₂ complexes. TLR4/MD2 and TLR4*/MD2* proteins are represented with cartoons and colored cyan and bright orange respectively. Neo-3 is represented with yellow sticks and spheres (taking L-Neo-3 as an example).

Figure S2. RMSDs of the protein backbone atoms in the second (A) and third (B) independent repeated simulations of $(2*L-Neo-3/TLR4/MD2)_2$ and $(2*D-Neo-3/TLR4/MD2)_2$ systems.

Figure S3. RMSFs of the C α atoms of TLR4 (**A**), TLR4* (**B**), MD2 (**C**), and MD2* (**D**) during the last 80 ns trajectories in the simulation of (2*L-Neo-3/TLR4/MD2)₂ and (2*D-Neo-3/TLR4/MD2)₂ systems.

Figure S4. (A, B) Changes in Coulomb interaction energy (A) and van der Waals (vdW) interaction energy (B) between two L-Neo-3 or two D-Neo-3 molecules within the cavity of MD2 during the last 80 ns of MD trajectories; (C) The average Coulomb interaction energy (red) and vdW interaction energy (blue) between two L-Neo-3 or two D-Neo-3 molecules within the cavity of MD2 over the last 80 ns of MD trajectories.

Figure S5. (A-C) Time evolution of distance between two L-Neo-3 molecules in three independent repeated simulations; **(D)** The relative position of two L-Neo-3 at the beginning (left) and ending (right) in the first simulation.

Figure S6. Histogram analysis of the overlap between umbrella windows along the reaction coordinates of L-Neo-3A(A) and L-Neo-3B(B) binding to TLR4/MD2. Each window consistently overlaps with its neighboring windows.

Table S1. RESP charges of all atoms of L-Neo-3 and D-Neo-3 molecules. (e = 1.602176×10^{-19} C).

Atom index	Atom type	L-Neo-3 RESP charge (e)	D-Neo-3 RESP charge (e)	Atom index	Atom type	L-Neo-3 RESP charge (e)	D-Neo-3 RESP charge (e)
1	С	-0.253542	-0.23047	36	н	0.139383	0.132874
2	С	0.376439	0.405284	37	н	0.142317	0.152758
3	С	0.025192	0.048769	38	Н	0.128338	0.153559
4	С	-0.25267	-0.235421	39	н	0.020216	0.04282
5	С	0.029439	-0.04222	40	н	0.020216	0.04282
6	С	-0.212705	-0.248908	41	н	0.067573	0.061056
7	С	0.123748	-0.048803	42	н	0.067573	0.061056
8	С	-0.176916	-0.042412	43	н	0.146684	0.141066
9	С	0.159446	0.090866	44	н	0.152252	0.150045
10	С	-0.250805	-0.221753	45	н	0.152252	0.150045
11	С	-0.204099	-0.206394	46	н	0.146684	0.141066
12	С	0.362112	0.367569	47	н	0.368103	0.375482
13	С	-0.204099	-0.206394	48	н	0.386652	0.402695
14	С	-0.250805	-0.221753	49	н	0.376652	0.352695
15	0	-0.581886	-0.592086	50	н	0.313926	0.300725
16	N	-0.915712	-0.981363	51	н	0.160165	0.178078
17	С	0.634421	0.7044	52	н	0.03283	0.112679
18	N	-0.864813	-0.687066	53	н	0.03283	0.112679
19	С	0.392859	0.120197	54	н	0.03283	0.112679
20	С	0.292193	0.652868	55	н	0.03283	0.112679
21	0	-0.473368	-0.625392	56	н	0.03283	0.112679
22	С	0.998173	0.956254	57	н	0.03283	0.112679
23	С	-0.295653	-0.519383	58	н	0.03283	0.112679
24	С	-0.295653	-0.519383	59	н	0.03283	0.112679
25	С	-0.295653	-0.519383	60	н	0.03283	0.112679
26	0	-0.380974	-0.541226	61	н	0.000455	-0.096873
27	С	0.082506	0.421155	62	н	0.000455	-0.096873
28	С	-0.089115	-0.108226	63	н	-0.006231	0.013829
29	С	0.10885	0.050153	64	н	-0.006231	0.013829
30	С	-0.145715	-0.143113	65	н	0.112335	0.117475
31	С	-0.151992	-0.133848	66	н	0.116916	0.115157
32	С	-0.093748	-0.093547	67	н	0.103083	0.105441
33	С	-0.151992	-0.133848	68	н	0.116916	0.115157
34	С	-0.145715	-0.143113	69	н	0.112335	0.117475
35	0	-0.532239	-0.629581	i			