Supplemental Material

for

Lanthanium Nitride LaN₉ Featuring Azide Units: the First Metal

Nine-nitride as High-energy Density Material

Shuyi Lin^{1, 2, #}, Jingyan Chen^{1, #}, Bi Zhang¹, Jian Hao^{1, *}, Meiling Xu^{1, *} and Yinwei Li¹ ¹Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China ²Department of Applied Physics, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China

Corresponding authors: xml@calypso.cn and jian_hao@jsnu.edu.cn

A New High-Pressure Phase for LaN₄

In addition to the known La-N compounds, and newly predicted LaN₉, a notable monoclinic phase for LaN₄ (denoted as P-1 LaN₄), in the pressure range from 39 to 83 GPa is predicted. Combined with previous reports¹, LaN₄ is energetically stable above 14 GPa, then undergoes a structural transition from C2/c to P-1 structure at 39 GPa, and finally it decomposes into C2/c LaN₃ and Cm LaN₈ at 83 GPa. As shown in Fig. S4(b), P-1 LaN₄ possesses N₄ chair-type polymeric nitrogen units with an average N-N bond length of 1.33 Å at 50 GPa. Figure S4 (c) suggests that the N-N bonding states are fully occupied, while the antibonding states are partially occupied, indicating the covalent bonding between neighboring N atoms. The ICOHP value for N-N in P-1 LaN₄ is -4.2, which is smaller in absolute magnitude compared to that of N-N in both LaN_9 and Cm LaN_8 , indicating the relatively weaker N-N covalent bonding in P-1 LaN₄. Phonon spectra calculations and AIMD simulations demonstrate the dynamical and thermal stability of P-1 LaN₄ at 50 GPa [Figs. S5(a) and S5(b)]. Band structure calculation reveals the metallic property of P-1 LaN₄ [Fig. S5(c)]. After the structure optimization, N₄ chair-type polymeric nitrogen units will turn into nitrogen molecules at ambient pressure [Fig. S4(d)], attributed to the weak N-N covalent interactions.

Figure. S01. The families of binary metal nitrides at high pressure. Lanthanum, a member of the lanthanide series, tends to have higher production costs compared to other metals such as lithium, sodium, potassium, calcium, magnesium, iron, nickel, and copper. This is primarily attributed to the relative scarcity of lanthanides and the complexity involved in their extraction processes. Despite these higher production costs, it is noteworthy that a high level of purity, specifically 99.99%, can be obtained for lanthanum at a cost of \$3.5 per gram. Therefore, lanthanum can be considered relatively affordable.

Fig. S1. (a) The formation enthalpy of LaN_9 with respect to discomposition into stable binary comounds and nitrogen at given pressure.

Figure S2. Phonon dispersion curves of LaN_8 at (a) 60 and (c) 0 GPa. Energy fluctuations during MD simulations (300 K) of LaN_8 at (b) 60 and (d) 0 GPa.

Figure S3. Band structures and PDOS for LaN_8 at (a) 60 GPa and (b) 0 GPa.

Figure S4. (a) The enthalpy difference curves of LaN_4 in the C2/c phase with respect to the *P*-1 phase. (b) Crystal structure of LaN_4 at 50 GPa. (c) Plots of pCOHP and ICOHP for LaN_4 at 50 GPa. (d) Crystal structure of LaN_4 at 0 GPa.

Figure S5. (a)Phonon dispersion curves, (b) energy fluctuations during MD simulations at 300 K, and (c) band structures and PDOS of LaN_4 at 50 GPa.

Compounds	Structure type	Nitrogen net
MN ₃ (M=Li, Na, K, Rb, Cs), BaN ₆ , Ba ₂ N ₁₁	N ₃ units	0-0-0
MnN ₄ , Al ₂ N ₇ , Na ₂ N ₈ , Li ₂ N ₄ , MgN ₄	N ₄ rings	
$\begin{split} &MN_5(M{=}Li, \ Na, \ K, \ Rb, \ Cs, \ Ca, \ Sr, \ Ba, \ Cu, \\ &Ta), \ MN_{10}(M{=}Be, \ Mg, \ Ba), \ MN_{15}(M{=}Al, \\ &Ga, \ Sc, \ Y), HfN_{20} \end{split}$	N ₅ rings	
WN ₆ , SnN ₆ , MN ₃ (M=Cs, Ca, Sr, K, Mg)	N ₆ rings	

Table S0I. Common polymerization forms of nitrogen in metal nitrides.

$$\begin{split} MN_4 \ (M = Be, \ Cd, \ Fe, \ Gd, \ Re, \ Os, \ W, \ Ru, \\ Zn, \ Sn), GdN_6, \ ReN_8, \ HfN_{10}, \ ScN_5, \ SnN_{8,} \\ FeN_6, \ FeN_4, \ FeN_8, \ Fe_3N_8 \end{split}$$

N-chains

Compound	Pressure (GPa)	Space group	<i>a</i> , <i>b</i> , <i>c</i> (Å) <i>α</i> , <i>β</i> , <i>γ</i> (deg)	Atomic position
LaN4	50	<i>P</i> -1	a=6.366 b=7.034 c=5.116 $a=\gamma=90$ $\beta=110.410$	La (2a) (0.000, 0.000, 0.000) N1 (2i) (0.279, 0.739, 0.670) N2 (2i) (0.551, 0.526, 0.342)
LaN ₈	0	Cm	a=6.366 b=7.034 c=9.456 $a=\gamma=90$ $\beta=149.532$	La(2a) (1.179, 0.000, 0.283) N1(4b) (1.257, 0.154, 0.583) N2(4b) (1.198, -0.171, 0.972) N3(4b) (0.878, -0.178, 0.696) N4(2a) (0.326, 0.000, 0.094) N5(2a) (1.462, 0.000, 0.751)
LaN ₈	50	Cm	a=9.274 b=6.629 c=4.605 $\alpha=\gamma=90$ $\beta=80.883$	La1(2a) (-0.384, 0.000, 0.207) La2(2a) (-0.846, 0.000, 0.817) N1(4b) (-0.191, -0.162, -0.172) N2(4b) (-0.742, -0.161, 0.324) N3(4b) (-0.034, -0.825, -0.705) N4(4b) (-0.481, -0.823, -0.240) N5(4b) (-0.124, -0.327, -0.195) N6(4b) (-0.674, -0.329, 0.329) N7(2a) (-0.414, 0.000, -0.285) N8(2a) (-0.970, 0.000, 0.325) N9(2a) (-0.108, 0.000, -0.183) N10(2a) (-0.657, 0.000, 0.304)
LaN ₉	20	Pm-3	a=b=c=4.732 $\alpha=\beta=\gamma=90$	La (1b) (0.500, 0.500, 0.500) N1(3d) (0.000, 0.000, 0.500) N2(6g) (0.753, 0.500, 0.000)

Table SI. The optimized structural parameters of LaN_4 , LaN_8 and LaN_9 .

Table SII. The calculated elastic constants C_{ij} (GPa) of LaN₈ and LaN₉ at ambient pressure.

Compounds	C_{11}	C_{12}	<i>C</i> ₁₃	<i>C</i> ₁₅	<i>C</i> ₂₂	C ₂₃	C ₂₅	<i>C</i> ₃₃	C ₃₅	C ₄₄	C_{46}	C ₅₅	C ₆₆
LaN ₈	55	37	41	-5	317	32	-12	184	-1	31	-2	23	12
LaN ₉	155	25	/	/	/	/	/	/		15			

Table SIII. Bader charges analysis of P-1 LaN₄, cm LaN₈, and LaN₉ at high pressure.

Compounds	Pressure	La(e)	N(e)
LaN ₄	50	-1.88	+0.47
LaN ₈	60	-1.98	+0.25
LaN ₉	20	-2.10	+0.23

REFERENCES

1 X. Li, X. Zhang, Z. Yang, Y. Liu and G. Yang, Pressure-stabilized graphene-like P layer in superconducting LaP₂, *Phys. Chem. Chem. Phys.*, 2022, **24**, 6469–6475.