Supporting Information

A DFT Study of CO₂ Electroreduction Catalyzed by Hexagonal Boron-Nitride Nanosheets with Vacancy Defects

Dušan N. Sredojević,¹ Ivana Vukoje,¹ Đorđe Trpkov,¹ Edward N. Brothers²

¹Vinča Institute of nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia. ²Gaussian, Inc., Wallingford, Connecticut, USA

Figure S1. Contour plots of occupied Kohn–Sham orbitals at around -14 eV of VB3N-CO adduct. Green and maroon areas indicate the change of the sign of the orbitals.

Figure S2. The free-energy changes (ΔG_{sol}) were calculated for the electrochemical pathways, for the reduction of CO₂, on the V_B monovacancy of *h*-BN using the CHE model. There are ten (H⁺ + e⁻) pair transfers to CO₂.

Figure S3. The free-energy changes (ΔG_{sol}) were calculated for the electrochemical pathways, for the reduction of CO₂, on the V_{BN} divacancy of *h*-BN using the CHE model. There are ten (H⁺ + e⁻) pair transfers to CO₂.

Figure S4. The free-energy changes (ΔG_{sol}) were calculated for the electrochemical pathways, for the reduction of CO₂, on the *armchair* conformation of *h*-BN nanosheet edges using the CHE model. There are eight (H⁺ + e⁻) pair transfers to CO₂.