Supplementary Information: Methane dimer rovibrational states and Raman transition moments

Alberto Martín Santa Daría,¹ Gustavo Avila,² and Edit Mátyus^{2, *}

¹Departamento de Química Física, Universidad de Salamanca, Spain; ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A 1117 Budapest, Hungary ²ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A 1117 Budapest, Hungary (Dated: December 21, 2023)

^{*} edit.matyus@ttk.elte.hu

I. MOLECULAR SYMMETRY GROUP OF THE METHANE DIMER

G_{576}^{a}	Ê	(14)(23)	(14)(23)(58)(67)	(243)	(243)(58)(67)	(243)(687)	(234)(687)	(34)(78)(9,10)	(1423)(78)(9,10)	(1423)(5867)(9,10)	(15)(26)(37)(48)	(1548)(2637)	(15)(264837)	(15)(26)(38)(47)(9,10)	(1547)(2638)(9,10)	(15)(264738)(9,10)	
R^{b} K_{-}^{c}	1	2	3	4	5 48	6 29	7 30	8 36	9 72	10 26	11 19	12 26	13 06	14 12	$\frac{15}{36}$	16 06	a d
$\frac{\pi_R}{\mathbf{V}(1)}$	1	1	9 1	10	40	1	1	1	1	1	12	1	90	12	1	90	$\frac{g_{\rm ns}}{15}$
$\Lambda_1(1)$ $\mathbf{Y}_1(1)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10
$\Lambda_2(1)$ $\mathbf{Y}(1)$	1	1	1	1	1	1	1	- 1 1	- 1 1	- 1	- 1 1	- 1 1	- 1 1	1	1	1	10
$X_3(1)$ $X_1(1)$	1	1	1	1	1	1	1	- 1 1	- 1 1	- 1	1	1	1	- 1 1	- 1 1	- 1 1	10
$\mathbf{X}_4(1)$ $\mathbf{X}_4(2)$	1 9	1	1	1	1	1	1	1	1	1	- 1	- 1	- 1	- 1	- 1	- 1 _ 1	10
$\Lambda_5(2)$ V (2)	2	2	2	- 1 1	- 1 1	2	- 1 1	•	•	•	·	•	•	2	2	- 1 1	1
$\mathbf{X}_{6}(2)$ $\mathbf{X}_{1}(2)$	2	2	2	- 1 _ 1	- 1	1	- 1	•	•	•	?	2	1	- 2	- 2	T	1
$\mathbf{X}_7(2)$ $\mathbf{X}_7(2)$	2	2	2	- 1 _ 1	- 1	- 1 - 1	2	•	•	•	- 2	- 2	1	•	•	•	2
$\mathbf{X}_{8}(2)$ $\mathbf{X}_{1}(2)$	2 1	2 1		- 1 1	- 1 1	-1	2	•	•	•	2	2	- 1	•	•	•	10
$X_{9}(2)$ $X_{10}(6)$	- 6	+ 9		1 2	_ 1	- 2	- 2	_ ?	•	・ ?	·	•	•	•	•	•	15
$X_{10}(0)$ $X_{10}(6)$	6	2	$-2 \\ -2$	3 2	_ 1	•	•	$-\frac{2}{2}$	•	-2^{2}	·	•	•	•	•	•	15
$X_{11}(0) = X_{12}(0)$	0	2	-2	0	- 1	•	•	1	1	1	2	· 1	•	२	· 1	•	3
$X_{12}(9)$ $X_{12}(0)$	9	-3	1	•	•	•	•	- 1 - 1	1	- 1 _ 1	- J 2	1	•	3	- 1 1	•	5 6
$X_{13}(9)$ $X_{13}(0)$	9	-3	1	•	•	•	•	- 1 1	1	- 1 1	- 3 - 3	- 1 1	•	- J - 3	1	•	2 2
$\mathbf{X}_{14}(9)$ $\mathbf{X}_{17}(0)$	9	-0 2	1 1	•	·	·	•	1 1	1	1	- J 2	1	•	- J 2	1	•	5
$\mathbf{X}_{15}(9)$ $\mathbf{Y}_{12}(19)$	ี 1 จ	-3 1	1 /	?	1	•	•	1	- 1	T	ა	- 1	·	ა	- 1	•	6
$\Lambda_{16}(12)$	12	4	-4	- 3	1	•	•	•	•	•	•	•	•	•	•	•	0

TABLE I. Character table of the molecular symmetry group of the methane dimer. The table was generated using the GAP program according to instructions of Ref. [1].

^a Zero characters are labeled with "." to enhance readability.

^b Class index.

^c Number of elements in class $\operatorname{Cl}[R]$.

^d Spin statistical weight.

II. $T_d(M)$ CHARACTER TABLE

	E	(1	(14)(23)) [(1423	$)]^*$ [(23)]*	Irreps
	1		8 3	6	6	
j_k^{M}	$2j^{\mathrm{M}} + 1$	$\sum_{m=-j^{M}}^{j^{M}} D_{t}$	${}^{j^{M}*}_{m,m}(0,0,\frac{2\pi}{3}) \sum_{m=-j^{M}}^{j^{M}} D^{j^{M}*}_{m,m}(\frac{\pi}{3})$	$(\pi, \pi, 0) \sum_{m=-j^{M}}^{j^{M}} D_{m,m}^{j^{M}*}($	$\frac{\pi}{6}, \frac{\pi}{2}, -\frac{\pi}{6}) \sum_{m=-j^{\mathrm{M}}}^{j^{\mathrm{M}}} D_{m,m}^{j^{\mathrm{M}}}(0, -)$	$\pi, 0)$
0	1	1	1	1	1	A_1
1	3	0	-1	1	-1	F_1
2	5	-1	1	-1	1	$\mathrm{E}\oplus\mathrm{F}_2$
3	7	1	-1	-1	-1	$A_2 \oplus F_1 \oplus F_2$
4	9	0	1	1	1	$A_1 \oplus E \oplus F_1 \oplus F_2$
5	11	-1	-1	1	-1	$E\oplus 2F_1\oplus F_2$

TABLE II. Characters and irrep decomposition of the rotational functions of methane in the $T_{\rm d}(M)$ molecular symmetry group [2].

FIG. 1. 2D cut of the wave function of the ground state, [1,0], of the ortho-meta spin isomer corresponding to the J0.2 (from the 6-fold degenerate J0.2–7) state (Table V).

FIG. 2. 2D cut of the wave function of the ground state, [1, 1], of the ortho-ortho spin isomer corresponding to the J0.8 (from the 9-fold degenerate J0.8–16) state (Table V).

FIG. 3. 2D cut of the wave function of the ground state, [2,0], of the meta-para spin isomer corresponding to the J1.83 (from the 4-fold degenerate J1.83–86) state (Table V).

FIG. 4. 2D cut of the wave function of the ground state, [2, 1], of the ortho-para spin isomer corresponding to the J1.93 (from the 12-fold degenerate J1.93–104) state (Table V).

(ω, σ)	α :	xx	xy	xz	yy	yz	zz
(0,0)		$-\frac{1}{\sqrt{3}}$	0	0	$-\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$
(2, -2)		$\frac{1}{2}$	$-\frac{\mathrm{i}}{2}$	0	$-\frac{1}{2}$	0	0
(2, -1)		0	0	$\frac{1}{2}$	0	$-\frac{\mathrm{i}}{2}$	0
(2,0)		$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{\sqrt{6}}$	0	$\sqrt{\frac{2}{3}}$
(2,1)		0	0	$-\frac{1}{2}$	0	$-\frac{\mathrm{i}}{2}$	0
(2,2)		$\frac{1}{2}$	$\frac{\mathrm{i}}{2}$	0	$-\frac{1}{2}$	0	0

TABLE III. $U^{(\Omega)}_{\omega\sigma,\alpha}$ matrix elements for $\Omega = 2$.

TABLE IV. $[U^{(\Omega)}_{\omega\sigma,\alpha}]^{-1}$ matrix elements for $\Omega = 2$.

α	(ω,σ) :	(0,0)	(2,-2)	(2,-1)	(2,0)	(2,1)	(2,2)
xx		$-\frac{1}{\sqrt{3}}$	$\frac{1}{2}$	0	$-\frac{1}{\sqrt{6}}$	0	$\frac{1}{2}$
xy		0	$\frac{\mathrm{i}}{2}$	0	0	0	$-\frac{\mathrm{i}}{2}$
xz		0	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0
yy		$-\frac{1}{\sqrt{3}}$	$-\frac{1}{2}$	0	$-\frac{1}{\sqrt{6}}$	0	$-\frac{1}{2}$
yz		0	0	$\frac{\mathrm{i}}{2}$	0	$\frac{\mathrm{i}}{2}$	0
zz		$-\frac{1}{\sqrt{3}}$	0	0	$\sqrt{\frac{2}{3}}$	0	0

TABLE V. Computed J = 0 and J = 1 rovibrational states of the (CH₄)₂. The energies are referenced to the ZPVE (94.25 cm⁻¹).

Label	$\tilde{\nu} \ [\mathrm{cm}^{-1}]$ Assignment	Symm.	Label	$\tilde{\nu} \ [\mathrm{cm}^{-1}]$	Assignment	Symm.
J0.n			J1.n			
1	$0.00 \ [[0,0]_0,0]_{00}$	$X_{1}(1)$	1	0.24	$[[0,0]_0,1]_{10}$	$X_{2}(1)$
2 - 7	$8.99 [[1,0]_1,1]_{00}$	$X_{11}(6)$	2 - 7	9.12	$[[1,0]_1,0]_{10}$	$X_{10}(6)$
8 - 16	18.04 $[[1,1]_L, L]_{00} (L=0,2)$	$X_{15}(9)$	8 - 13	9.80	$[[1,0]_1,1]_{10}$	$X_{11}(6)$
17 - 25	$19.32 \ [[1,1]_1,1]_{00}$	$X_{12}(9)$	14 - 19	9.91	$[[1,0]_1,2]_{10}$	$X_{10}(6)$
26 - 34	19.37 $[[1,1]_L, L]_{00} (L=0,2)$	$X_{15}(9)$	20 - 28	18.10	$[[1, 1]_0, 1]_{10}$	$X_{12}(9)$
35 - 40	$31.43 \ [[2,0]_2,2]_{00}$	$X_{11}(6)$	29 - 37	18.65	$[[1, 1]_1, 0]_{10}$	$X_{15}(9)$
41 - 44	$31.73 \ [[2,0]_2,2]_{00}$	$X_{9}(2)$	38 - 46	18.74	$[[1,1]_2,1]_{10}$	$X_{12}(9)$
45 - 56	$32.17 [[2,1]_L, L]_{00} (L=1,2,3)$	$X_{16}(12)$	47 - 55	18.90	$[[1,1]_1,2]_{10}$	$X_{15}(9)$
57	$32.93 \ [[0,0]_0,0]_{00}$	$X_{1}(1)$	56 - 64	18.95	$[[1,1]_1,1]_{10}$	$X_{12}(9)$
58 - 66	$38.44 \ [[2,1]_3,3]_{00}$	$X_{14}(9)$	65 - 73	19.64	$[[1, 1]_2, 2]_{10}$	$X_{15}(9)$
67 - 75	$38.88 \ [[2,1]_1,1]_{00}$	$X_{15}(9)$	74 - 82	19.74	$[[1, 1]_2, 3]_{10}$	$X_{12}(9)$
76 - 84	$40.47 \ [[2,1]_2,2]_{00}$	$X_{12}(9)$	83-86	22.52	$[[2,0]_2,L]_{10}$ $(L = 1,2,3)$	$X_{9}(2)$
85 - 96	40.52 $[[2,1]_L, L]_{00} (L=1,2,3)$	$X_{16}(12)$	87 - 92	31.29	$[[2,0]_2,1]_{10}$	$X_{10}(6)$
97 - 105	$42.19 \ [[2,1]_2,2]_{00}$	$X_{12}(9)$	93 - 104	31.67	$[[2,1]_j,\Lambda]_{10}$ (mixed)	$X_{16}(12)$
106 - 114	$42.43 \ [[2,1]_1,1]_{00}$	$X_{14}(9)$	105 - 110	31.82	$[[2,0]_2,2]_{10}$	$X_{11}(6)$
115 - 123	$43.57 \ [[2,1]_3,3]_{00}$	$X_{15}(9)$	111 - 114	31.97	$[[2,0]_2,L]_{10}$ $(L = 1,2,3)$	$X_{9}(2)$
124 - 129	$45.14 \ [[1,0]_1,1]_{00}$	$X_{11}(6)$	115 - 120	32.20	$[[2,0]_2,3]_{10}$	$X_{10}(6)$
	-		121 - 132	32.45	$[[2,1]_j,\Lambda]_{10}$ (mixed)	$X_{16}(12)$
			133	33.15	$[[0,0]_0,1]_{10}$	$X_2(1)$

TABLE VI. Computed J = 2 and J = 3 rovibrational states of the $(CH_4)_2$. The energies are referenced to the ZPVE (94.25 cm⁻¹).

Label	$\tilde{\nu} [\mathrm{cm}^{-1}]$	Assignment	Symm.	Label	$\tilde{\nu} \ [\mathrm{cm}^{-1}]$	Assignment	Symm.
J2.n				J3.n			
1	0.73	$[[0,0]_0,2]_{20}$	$X_1(1)$	1	1.49	$[[0,0]_0,3]_{30}$	$X_{2}(1)$
2 - 7	9.44	$[[1,0]_1,1]_{20}$	$X_{11}(6)$	2 - 7	10.00	$[[1,0]_1,2]_{30}$	$X_{10}(6)$
8 - 13	10.29	$[[1,0]_1,2]_{20}$	$X_{10}(6)$	8 - 13	11.02	$[[1,0]_1,3]_{30}$	$X_{11}(6)$
14 - 19	10.55	$[[1,0]_1,3]_{20}$	$X_{11}(6)$	14 - 19	11.46	$[[1,0]_1,4]_{30}$	$X_{10}(6)$
20 - 28	18.28	$[[1, 1]_2, 0]_{20}$	$X_{15}(9)$	20 - 28	18.66	$[[1, 1]_2, 1]_{30}$	$X_{12}(9)$
29 - 37	19.01	$[[1, 1]_1, 1]_{20}$	$X_{12}(9)$	29 - 37	19.58	$[[1, 1]_2, 2]_{30}$	$X_{15}(9)$
38 - 46	19.10	$[[1, 1]_2, 1]_{20}$	$X_{12}(9)$	38 - 46	19.61	$[[1, 1]_1, 2]_{30}$	$X_{15}(9)$
47 - 55	19.22	$[[1, 1]_0, 2]_{20}$	$X_{15}(9)$	47 - 55	19.95	$[[1, 1]_0, 3]_{30}$	$X_{12}(9)$
56 - 64	19.31	$[[1, 1]_1, 2]_{20}$	$X_{15}(9)$	56 - 64	20.00	$[[1, 1]_1, 3]_{30}$	$X_{12}(9)$
65 - 73	19.80	$[[1, 1]_2, 2]_{20}$	$X_{15}(9)$	65 - 73	20.57	$[[1, 1]_2, 3]_{30}$	$X_{12}(9)$
74 - 82	19.92	$[[1, 1]_1, 3]_{20}$	$X_{12}(9)$	74 - 82	20.58	$[[1,1]_2,4]_{30}$	$X_{15}(9)$
83 - 91	20.27	$[[1, 1]_2, 3]_{20}$	$X_{12}(9)$	83 - 91	21.16	$[[1,1]_1,4]_{30}$	$X_{15}(9)$
92 - 100	20.50	$[[1,1]_2,4]_{20}$	$X_{15}(9)$	92 - 100	21.58	$[[1,1]_2,5]_{30}$	$X_{12}(9)$
101 - 104	22.98	$[[2,0]_2,L]_{20} \ (L=0,1,2,3,4)$	$X_9(2)$	101 - 104	23.66	$[[2,0]_2,L]_{30} (L=1,2,4)$	$X_9(2)$
105 - 108	26.68	$[[2,0]_2, L]_{20} \ (L=0,1,2,3,4)$	$X_9(2)$	105 - 108	27.40	$[[2,0]_2,L]_{30} (L=2,3)$	$X_9(2)$
109 - 114	29.86	$[[2,0]_2,0]_{20}$	$X_{11}(6)$	109 - 114	30.46	$[[2,0]_2,1]_{30}$	$X_{10}(6)$
115 - 120	29.87	$[[2,0]_2,1]_{20}$	$X_{10}(6)$	115 - 120	30.50	$[[2,0]_2,2]_{30}$	$X_{11}(6)$
121 - 126	31.54	$[[2,0]_2,2]_{20}$	$X_{11}(6)$	121 - 126	32.03	$[[2,0]_2,3]_{30}$	$X_{10}(6)$
127 - 138	31.93	$[[2, 1]_j, \Lambda]_{20}$ (mixed)	$X_{16}(12)$	127 - 138	32.40	$[[2,1]_j,\Lambda]_{30}$ (mixed)	$X_{16}(12)$
139 - 144	32.38	$[[2,0]_2,3]_{20}$	$X_{10}(6)$	139 - 142	33.14	$[[2,0]_2,L]_{30} (L=1,3,5)$	$X_9(2)$
145 - 148	32.42	$[[2,0]_2,4]_{20}$	$X_9(2)$	143 - 148	33.20	$[[2,0]_2,4]_{30}$	$X_{11}(6)$
149 - 160	32.54	$[[2,1]_j,\Lambda]_{20}$ (mixed)	$X_{16}(12)$	149 - 160	33.27	$[[2,1]_j,\Lambda]_{30}$ (mixed)	$X_{16}(12)$
161 - 172	33.04	$[[2,1]_j,\Lambda]_{20}$ (mixed)	$X_{16}(12)$	161	33.85	$[[0,0]_0,3]_{30}$	$X_{2}(1)$
173 - 178	33.06	$[[2,0]_2,4]_{20}$	$X_{11}(6)$	162 - 173	33.87	$[[2,1]_j,\Lambda]_{30}$ (mixed)	$X_{16}(12)$
179	33.19	$[[0,0]_0,2]_{20}$	$X_1(1)$	174 - 179	34.13	$[[2,0]_2,5]_{30}$	$X_{10}(6)$
180 - 191	35.72	$[[2,1]_j,\Lambda]_{20}$ (mixed)	$X_{16}(12)$	180 - 191	36.12	$[[2,1]_j,\Lambda]_{30}$ (mixed)	$X_{16}(12)$
192–195	36.02	$[[2, 0]_2, L]_{20} \ (L = 0, 1, 2)$	$X_{9}(2)$	192 - 195	36.75	$[[2,0]_2,L]_{30} \ (L=1,2,3)$	$X_{9}(2)$
196-207	36.74	$[[2,1]_j,\Lambda]_{20}$ (mixed)	$X_{16}(12)$	196-207	36.81	$[[2,1]_j,\Lambda]_{30}$ (mixed)	$X_{16}(12)$
208-216	38.44	$[[2,1]_j,\Lambda]_{20}$ (mixed)	$X_{15}(9)$	208-219	37.59	$[[2,1]_j,\Lambda]_{30}$ (mixed)	$X_{16}(12)$
217-225	38.46	$[[2,1]_j,\Lambda]_{20}$ (mixed)	$X_{12}(9)$	220-228	38.84	$[[2,1]_j,\Lambda]_{30}$ (mixed)	$X_{12}(9)$
226-234	38.53	$[[2, 1]_j, \Lambda]_{20} \text{ (mixed)}$	$X_{15}(9)$	229-237	38.84	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$X_{12}(9)$
235-243	38.60	$[[2,1]_j,\Lambda]_{20}$ (mixed)	$X_{12}(9)$	238-246	38.92	$[[2,1]_j,\Lambda]_{30} \text{ (mixed)}$	$X_{15}(9)$
244-252	38.84	$\begin{bmatrix} [2,1]_j, \Lambda \end{bmatrix}_{20} \text{ (mixed)}$	$X_{15}(9)$	247-255	38.97	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$X_{15}(9)$
253-261	39.22	$\begin{bmatrix} [2,1]_j, \Lambda \end{bmatrix}_{20} \text{ (mixed)}$	$X_{15}(9)$	259-264	39.38	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$X_{12}(9)$
202-270	39.32	$\begin{bmatrix} [2,1]_j,\Lambda \end{bmatrix}_{20} \text{ (mixed)}$	$X_{15}(9)$	205-273	39.55	$[[2, 1]_j, \Lambda]_{30}$ (mixed)	$X_{12}(9)$
271-279	39.35	$\begin{bmatrix} [2,1]_j, \Lambda \end{bmatrix}_{20} \text{ (mixed)}$	$X_{12}(9)$	274-282	39.50	$[[2, 1]_j, \Lambda]_{30}$ (mixed)	$X_{15}(9)$
280-288	39.80	$\begin{bmatrix} [2,1]_j,\Lambda \end{bmatrix}_{20} \text{ (mixed)}$	$X_{12}(9)$	283-291	39.75	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$X_{12}(9)$
289-297	39.99	$\begin{bmatrix} [2, 1]_j, \Lambda \end{bmatrix}_{20} \text{ (mixed)}$	$X_{12}(9)$ $X_{-}(0)$	292-300	40.01	$\begin{bmatrix} [2, 1]_j, \Lambda \end{bmatrix}_{30} \text{ (mixed)}$	$X_{12}(9)$ $X_{(0)}$
298-300	40.13	$[[2, 1]_j, \Lambda]_{20} \pmod{2}$	$\mathbf{\Lambda}_{15}(9)$ $\mathbf{V}_{-}(0)$	301-309	40.04	$[[2, 1]_j, \Lambda]_{30} \pmod{2}$	$\mathbf{\Lambda}_{15}(9)$ $\mathbf{V}_{-}(0)$
307-313	40.21	$[[2, 1]_j, \Lambda]_{20} \pmod{2}$	$\mathbf{\Lambda}_{15}(9)$ $\mathbf{V}_{-}(0)$	310-318	40.00	$[[2, 1]_j, \Lambda]_{30} \pmod{2}$	$\mathbf{\Lambda}_{12}(9)$ $\mathbf{V}_{-}(0)$
310-324 205 222	40.43	$\begin{bmatrix} [2, 1]_j, \Lambda \end{bmatrix}_{20} (\text{mixed})$	$\mathbf{X}_{12}(9)$ $\mathbf{X}_{-}(0)$	319-327 200-226	40.14 40.57	$\begin{bmatrix} [2, 1]_j, \Lambda \end{bmatrix}_{30} \text{ (mixed)}$	$\mathbf{\Lambda}_{15}(9)$ $\mathbf{V}_{-}(0)$
920-999 924 945	40.04	$\begin{bmatrix} [2, 1] j, \Lambda \end{bmatrix}_{20} \text{ (mixed)}$	$\Lambda_{15}(9)$ $\mathbf{V}_{12}(19)$	320-330 227 945	40.37 40 59	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$\mathbf{\Lambda}_{15}(9)$ $\mathbf{X}_{11}(0)$
346-340	40.90 41.1¤	$[[2, 1]j, \Lambda]_{20} (\text{mixed})$ $[[2, 0]_2, L]_{22} (L = 2, 4)$	$\mathbf{X}_{-}(2)$	346 254	40.08	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$\mathbf{\Lambda}_{15}(9)$ $\mathbf{X}_{15}(0)$
350-258	41.10	$[[2, 0]_2, L]_{20} (L = 3, 4)$ $[[2, 1]_2, \Lambda]_{ab} (mixed)$	$\mathbf{X}_{12}(0)$	340-394 355_362	40.00	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$\mathbf{X}_{12}(9)$ $\mathbf{X}_{15}(0)$
990-999	41.20	[[2, 1]], $[1]$ (mixed)	$\Lambda_{12}(9)$	364-379	40.97 41 19	$[[2, 1]_j, \Lambda]_{30} \text{ (mixed)}$	$X_{15}(9) = X_{16}(0)$
				373-381	41 38	$[[2, 1]_j, \Lambda]_{30} (\text{mixed})$	$X_{12}(9)$ $X_{1c}(0)$
				010-001	41.00	$[[2, 1]_{j}, 1]_{30}$ (mixed)	12(<i>J</i>)

TABLE VII. Computed J = 4, 5, and 6 rovibrational states of the $(CH_4)_2$. The energies are referenced to the ZPVE (94.25 cm⁻¹).

Label	$\tilde{\nu}[\mathrm{cm}^{-1}]$	Assignment	Symm.	Label	$\tilde{\nu}[{\rm cm}^{-1}]$	Assignment	Symm.
J4.n				J5.n			
1	2.43	$[[0,0]_0,4]_{40}$	$X_{1}(1)$	1	3.65	$[[0,0]_0,5]_{50}$	$X_{2}(1)$
2 - 7	10.79	$[[1,0]_1,3]_{40}$	$X_{11}(6)$	2 - 7	11.82	$[[1,0]_1,4]_{50}$	$X_{10}(6)$
8 - 13	12.00	$[[1,0]_1,4]_{40}$	$X_{10}(6)$	8 - 13	13.21	$[[1,0]_1,5]_{50}$	$X_{11}(6)$
14 - 19	12.61	$[[1,0]_1,5]_{40}$	$X_{11}(6)$	14 - 19	14.01	$[[1,0]_1,6]_{50}$	$X_{10}(6)$
20 - 28	19.25	$[[1,1]_2,2]_{40}$	$X_{15}(9)$	20 - 28	20.09	$[[1, 1]_2, 3]_{50}$	$X_{12}(9)$
29 - 37	20.38	$[[1,1]_1,3]_{40}$	$X_{12}(9)$	29 - 37	21.39	$[[1,1]_1,4]_{50}$	$X_{15}(9)$
38 - 46	20.38	$[[1,1]_2,3]_{40}$	$X_{12}(9)$	38 - 46	21.42	$[[1,1]_2,4]_{50}$	$X_{15}(9)$
47 - 55	20.92	$[[1,1]_0,4]_{40}$	$X_{15}(9)$	47 - 55	22.13	$[[1,1]_0,5]_{50}$	$X_{12}(9)$
56 - 64	20.95	$[[1,1]_1,4]_{40}$	$X_{15}(9)$	56 - 64	22.15	$[[1,1]_1,5]_{50}$	$X_{12}(9)$
65 - 73	21.57	$[[1,1]_2,4]_{40}$	$X_{15}(9)$	65 - 73	22.80	$[[1,1]_2,5]_{50}$	$X_{12}(9)$
74 - 82	22.05	$[[1,1]_2,5]_{40}$	$X_{12}(9)$	74 - 82	23.47	$[[1,1]_2,6]_{50}$	$X_{15}(9)$
83 - 91	22.30	$[[1,1]_1,5]_{40}$	$X_{12}(9)$	83 - 91	23.70	$[[1,1]_1,6]_{50}$	$X_{15}(9)$
92 - 100	22.92	$[[1,1]_2,6]_{40}$	$X_{15}(9)$	92 - 100	24.51	$[[1,1]_2,7]_{50}$	$X_{12}(9)$
101 - 104	24.56	$[[2,0]_2,L]_{40} (L=2,3,4,5,6)$	$X_9(2)$	101 - 104	25.69	$[[2,0]_2,L]_{50} (L=3,6)$	$X_{9}(2)$
105 - 108	28.36	$[[2,0]_2,L]_{40} (L=2,3,4,5,6)$	$X_9(2)$	105 - 108	29.56	$[[2,0]_2,L]_{40} (L=4,5)$	$X_{9}(2)$
109 - 114	31.25	$[[2,0]_2,2]_{40}$	$X_{11}(6)$	109 - 114	32.22	$[[2,0]_2,3]_{50}$	$X_{10}(6)$
115 - 120	31.34	$[[2,0]_2,3]_{40}$	$X_{10}(6)$	115 - 120	32.41	$[[2,0]_2,4]_{50}$	$X_{11}(6)$
121 - 126	32.80	$[[2,0]_2,4]_{40}$	$X_{11}(6)$	121 - 126	33.87	$[[2,0]_2,5]_{50}$	$X_{10}(6)$
127 - 138	33.10	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{16}(12)$	127 - 138	34.03	$[[2,1]_j,\Lambda]_{50} \text{ (mixed)}$	$X_{16}(12)$
139 - 142	34.10	$[[2,0]_2,L]_{40} \ (L=2,4,6)$	$X_9(2)$	139 - 142	35.31	$[[2,0]_2,7]_{50}$	$X_9(2)$
143 - 154	34.20	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{16}(12)$	I6 n			
155 - 160	34.29	$[[2,0]_2,5]_{40}$	$X_{10}(6)$	50.11			
161	34.74	$[[0,0]_0,4]_{40}$	$X_{1}(1)$	1	5.10	$[[0,0]_0,6]_{60}$	$X_{1}(1)$
162 - 173	34.94	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{16}(12)$	2 - 7	13.08	$[[1,0]_1,5]_{60}$	$X_{11}(6)$
174 - 179	35.42	$[[2,0]_2,5]_{40}$	$X_{11}(6)$	8 - 13	14.68	$[[1,0]_1,6]_{60}$	$X_{10}(6)$
180 - 191	36.86	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{16}(12)$	14 - 19	15.65	$[[1,0]_1,7]_{60}$	$X_{11}(6)$
192 - 195	37.73	$[[2,0]_2, L]_{40} \ (L=3,4,5)$	$X_{9}(2)$	20 - 28	21.16	$[[1,1]_2,4]_{60}$	$X_{15}(9)$
196-207	37.84	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{16}(12)$	29 - 37	22.65	$[[1,1]_1,5]_{60}$	$X_{12}(9)$
208-219	38.71	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{16}(12)$	38 - 46	22.69	$[[1,1]_2,5]_{60}$	$X_{12}(9)$
220-228	39.38	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{15}(9)$	47 - 55	23.58	$[[1,1]_1,6]_{60}$	$X_{15}(9)$
229-237	39.43	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{15}(9)$	56-64	23.60	$[[1,1]_0,6]_{60}$	$X_{15}(9)$
238-246	39.59	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{12}(9)$	65-73	24.27	$[[1,1]_2,6]_{60}$	$X_{15}(9)$
247-255	39.61	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{12}(9)$	74-82	25.13	$[[1,1]_2,7]_{60}$	$X_{12}(9)$
256-264	40.14	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{15}(9)$	83-91	25.34	$[[1,1]_1,7]_{60}$	$X_{12}(9)$
265-273	40.42	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{15}(9)$	92-100	26.35	$[[1,1]_2,8]_{60}$	$X_{15}(9)$
274-282	40.43	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{12}(9)$	101-104	27.04	$[[2,0]_2,2]_{60}$	$X_9(2)$
283 - 291	40.52	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{15}(9)$	105 - 108	31.00	$[[2,0]_2,L]_{60} \ (L=3,4)$	$X_{9}(2)$
292-300	40.84	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{15}(9)$	109 - 114	33.39	$[[2,0]_2,2]_{60}$	$X_{11}(6)$
301-309	40.91	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{12}(9)$	115 - 120	33.71	$[[2,0]_2,3]_{60}$	$X_{10}(6)$
310-318	41.03	$[[2,1]_j,\Lambda]_{40}$ (mixed)	$X_{15}(9)$	121-132	35.18	$[[2,1]_j,\Lambda]_{60} \text{ (mixed)}$	$X_{16}(12)$
319-327	41.07	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{12}(9)$	133-138	35.22	$[[2,0]_2,4]_{60}$	$X_{11}(6)$
328-336	41.45	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{12}(9)$	139 - 150	36.70	$[[2,1]_j,\Lambda]_{60} \text{ (mixed)}$	$X_{16}(12)$
337-345	41.54	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{12}(9)$	151 - 154	36.75	$[[2,0]_2,L]_{60} \ (L=4,6)$	$X_{9}(2)$
346-354	41.72	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{15}(9)$	155	37.17	$[[0,0]_0,6]_{60}$	$X_1(1)$
355–363	41.84	$[[2,1]_j,\Lambda]_{40} \text{ (mixed)}$	$X_{12}(9)$	156-161	37.21	$[[2,0]_2,5]_{60}$	$X_{10}(6)$
				162-173	37.78	$[[2,1]_j,\Lambda]_{60} \text{ (mixed)}$	$X_{16}(12)$
				174 - 179	38.72	$[[2,0]_2,6]_{60}$	$X_{11}(6)$

- [1] R. Schmied and K. Lehmann, J. Mol. Spectrosc., 2004, 226, 201.
- [2] J. Sarka, A. G. Császár and E. Mátyus, Phys. Chem. Chem. Phys., 2017, 19, 15335.